The Chandra X-ray Observatory, a NASA Great Observatory, provides the most detailed view to date of the X-ray universe. With its exquisite imaging capabilities and high spectral resolution scientists have investigated phenomena as diverse as the spectra of Jupiter's aurora, the effects of dark energy on the growth of galaxy clusters, and the properties of faint x-ray sources in deep fields.
The Fermi Gamma-Ray Space Telescope (formerly GLAST) is providing our deepest and most detailed map of the gamma-ray sky. Fermi has recorded high-energy gamma rays produced by supernovae, pulsars, extreme flows of energy from systems powered by black holes, and gamma-ray bursts.
LISA Pathfinder is an ESA technology test mission for the eLISA/NGO mission to search for gravitational waves generated by massive objects such as black holes. NASA is contributing one of two payloads, named ST-7.
LISA Pathfinder will pave the way for eLISA/NGO. It will test new methods of spacecraft control and determine if laser interferometry is feasible at the level of accuracy required by eLISA/NGO.
LISA Pathfinder will place two test-masses in a nearly perfect gravitational free-fall, and of controlling and measuring their motion with unprecedented accuracy. This is achieved through state-of-the-art technology comprising inertial sensors, a laser metrology system, a drag-free control system and an ultra-precise micro-propulsion system.
All these technologies are essential not only for eLISA/NGO—they also lie at the heart of any future space-based test of Einstein's General Relativity. LISA Pathfinder is scheduled for launch in 2015.
Final Launch Preparations for LISA Pathfinder: Images of Integration of LISA Pathfinder into VEGA rocket. Photo credit(s): ESA, Manuel Pedoussaut, 2015
Further information is available from ESA LISA Pathfinder News and Highlights.
XMM-Newton, the X-ray Multi-Mirror Mission, is the second cornerstone of the ESA Horizon 2000 program. With high collecting area in the x-ray band, XMM provides vital information for studies of fundamental and relativistic processes from neutron stars and active galactic nuclei, the creation and dispersal of the elements in supernovae, the distribution of dark matter in clusters, groups, and elliptical galaxies, and young active stars to constrain models of the early solar system and star forming regions.
The following missions are part of the Explorer Program, but their science is closely related to the Physics of the Cosmos Theme.
NASA's Chandra, Webb Combine for Arresting Views
Four composite images deliver dazzling views from NASA's Chandra X-ray Observatory and James Webb Space Telescope of two galaxies, a nebula, and a star cluster. These cosmic wonders and details are made available by mapping the data to colors that humans can perceive. Read more.
See our new Events Calendar
Program News and Announcements
Project News
Related News