Deposited Blocking Filters for X-ray Detectors

PI: Mark Bautz/MIT MKI

Objectives and Key Challenges:
- Silicon Imaging X-ray detectors require thin filters (<300 nm) to block noise/background from UV and optical light
- State-of-the-art, free-standing filters use fragile, thin substrates
- Objective: deposit blocking filter directly on CCD X-ray detector, eliminating substrate
- Challenges:
 - Deposit filter directly without compromising CCD performance
 - Deposit sufficiently thin, uniform filters

Significance of Work:
- Filter deposited on detector requires no fragile substrate
- Allows cheaper, more robust sensors (no vacuum housing!)
- Improves QE & makes larger focal planes practical

Approach:
- Exploit existing stocks of (engineering grade/flight spare) X-ray CCD detectors at MIT Lincoln Laboratory
- Screen, thin, passivate, package & apply filters to detectors
- Filter is Al with AlO₂ cap
- Start thick (220 nm Al), get progressively thinner
- Use existing MIT facilities for X-ray characterization
- Use existing & upgraded facilities for optical characterization

Key Collaborators:
- MIT Kavli Institute (Bautz, Kissel et al.)
- MIT Lincoln Laboratory (Suntharalingam, Ryu, Burke, O’Brien)

Current Funded Period of Performance:

Accomplishments and Next Milestones:
- Reduced pinhole fraction to < 1% (OD<7) for 220nm OBF
- Tested devices 70nm & 100nm thick Al OBF. Optical blocking as expected.
- With REXIS, developed & qualified underside coating as effective countermeasure for near-IR leakage through package.
- Long-term stability test in progress; no degradation in 8 months
- Supported env. tests of REXIS flight CCDs/OBFs, achieved TRL-6, surpassing project goals.
- Complete stability test and final publication by end date.

Application:
Every X-ray imaging or grating spectroscopy mission
- Explorers (Lobster, Arcus...)
- “Probes” (AEGIS, N_XGS, AXSIO, WFXT...)
- Flagship (Athena, X-ray surveyor)

\[TRL_{in} = 5 \quad TRL_{current} = 6 \quad TRL_{target} = 6 \]