SAHARA
Spectral Analysis with High Angular Resolution Astronomy
A mission concept for a soft X-ray optic with high spatial and spectral resolution over a wide field of view

Where to go from here...

APPROVED FOR PUBLIC RELEASE/DISTRIBUTION UNLIMITED
Sahara- A High Spatial and Spectral Resolution Imaging Mission

Goal: A large fraction of the IXO science for <1/5th the Astro2010 cost which can be launched in <10yrs

Cost Drivers: complexity & mass
Reduce Complexity: 1 instrument, 1 telescope, 1 mode
Reduce Mass: Shorten Focal Length from 20 to 4m

Short focal length starts a positive chain reaction: better plate scale for calorimeters, lighter optics easier to assemble, smaller/thinner pixels (better energy resolution), larger collecting area per unit mass, lighter overall system allow smaller rocket, faster slew time etc etc........
Core IXO Science

“The key component of the IXO focal plane is an X-ray microcalorimeter spectrometer—a 40 x 40 array of transition-edge sensors covering several arcminutes of sky that measure X-ray energy with an accuracy of roughly 1 part per 1,000 (depending on energy).”

<table>
<thead>
<tr>
<th>Questions:</th>
<th>Science Goals Set the Answers:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. collecting area?</td>
<td>Imaging spectral goals-spatially resolving structures discovered by Chandra in SN, Clusters, nearby galaxies with enough photons/angular bin to utilize high spectral resolution in moderate (100 ksec) exposures</td>
</tr>
<tr>
<td>2. FOV?</td>
<td>High enough area and spectral resolution to observe relativistic features in AGN</td>
</tr>
<tr>
<td>3. spectral resolution?</td>
<td></td>
</tr>
<tr>
<td>4. spatial resolution?</td>
<td></td>
</tr>
<tr>
<td>5. bandpass?</td>
<td></td>
</tr>
</tbody>
</table>

These determine the field of view, angular resolution, spectral resolution, collecting area.
Baseline Sahara Design

- **Optics**
 - Large (~3000 cm\(^2\) @1keV) collecting area **optimized** for the 0.2-3 keV band
 - goal of <5" angular resolution

- **Detectors**
 - Moderate (8' diameter)
 - FOV
 - Hierarchical array of calorimeters with \(\delta E < 2\) eV with 2.5" pixels

- **Spacecraft**
 - short focal length
 - allows low mass, rapid slew in LEO- high efficiency
Sahara and IXO Science

<table>
<thead>
<tr>
<th>Question</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>What happens close to a black hole?</td>
<td>Relativistic features in AGN at E<3 keV</td>
</tr>
<tr>
<td>When and how did SMBH grow?</td>
<td>High spectral resolution for ~ 1-3000 serendipitous AGN+detailed observations of many bright AGN</td>
</tr>
<tr>
<td>How does large scale structure evolve?</td>
<td>Observations of groups and clusters: dynamics, temperatures, etc to z>1 - physics of clusters, scaling laws for cosmology</td>
</tr>
<tr>
<td>What connects SMBH and LSS?</td>
<td>Direct measurements of effects of AGN feedback in clusters via spectral imaging</td>
</tr>
<tr>
<td>How does matter behave at very high density?</td>
<td>Resonance abs. lines in atmospheres of isolated neutron stars</td>
</tr>
</tbody>
</table>
Sahara and IXO Science Requirements

<table>
<thead>
<tr>
<th>Question</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>What happens close to a black hole?</td>
<td>Large collecting area for time resolved, high resolution spectra of AGN</td>
</tr>
<tr>
<td>When and how did SMBH grow?</td>
<td>Large field of view to obtain reasonable number of serendipitous sources per exposure, large collecting area to get good S/N, high spectral resolution to detect winds, <5" angular resolution to detect weak sources.</td>
</tr>
<tr>
<td>How does large scale structure evolve?</td>
<td>Large field of view with low background to detect clusters to virial radius, high spectral resolution to measure turbulence in clusters, good sensitivity</td>
</tr>
<tr>
<td>What connects SMBH and LSS</td>
<td>Direct measurements of effects of AGN feedback in clusters via spectral imaging, <5" angular resolution to spectrally/spatially resolve feedback features in clusters/groups</td>
</tr>
</tbody>
</table>
Sahara Requirement
FOV and Angular Resolution to Study X-ray Binaries and Diffuse Emission in Nearby Galaxies

circles: Sahara angular resolution and FOV

NGC253 Chandra Image
Spatial and Spectral
• Simulation of Tycho SNR
the SNR spatial and spectral resolution
of Sahara
Astro-H
XMM PN
Relativistic Features in AGN

- IXO did this science with Fe Kα, the physics is the "same" at Fe L
- A 15 ksec observation with Sahara can trace all the spectra features on relevant time scales (Blustin and Fabian 2010).

H0707-495 XMM RGS

Reverberation in 1H0707-495

relativistic Fe lines
Additional Top Level IXO Science Enabled by Sahara

- How do stars form?
- How does gas exchange in galaxies and the IGM?
- How do rotation and magnetic fields affect stars?
- How do massive stars and Type Ia SNe explode?

All these science areas (and more) are achievable with the Sahara technical requirements.
The Warm Hot Intergalactic Medium

- Detecting the WHIM in emission $kT = 0.1-0.3$ keV
- Oxygen (OVII, OVIII) emission lines are the best signature
- Separation from the Galactic emission with redshift is necessary

High resolution, low background, large solid angle essential

Sensitivity required:
Sahara $\Omega x A = \sim 0.05$ of that assumed by Takei et al.

So Sahara will obtain $\sim 1-10$ filaments/FOV (- 200-2000/yr) depending crucially on accuracy of physics and length of exposures

Spectrum of WHIM +Galactic emission 1.5x1.5' FOV

5x5 deg simulations
Signatures of Feedback

- **Feedback** - how galaxies and black holes influenced their environment and created the universe we see today.

- A general feature is the transmission of (energy, momentum, heat, ionization) from the source (AGN, star formation) to the gas that can form stars - how, where and when is this occurring.

- General process - hot and/or fast and/or ionized gas interacts with cold gas - Charge exchange must happen and now has been detected in starburst galaxies (Q. Wang and team).

- Sahara gets ~ 30 photons/line/25 sq arc secs in 30ks exposures - **complete map of velocity and mass in winds**.
Starburst + Normal Galaxies

- **Hot ISM**
 - Detect velocity shifts and broadening due to superwinds
 - Map temperatures and abundances in nucleus, disk, and halo
- **X-ray binaries**
 - Measure detailed spectra including intrinsic and ISM absorption features
 - Variability
Absorption features in Isolated NS to Determine EOS?

- Several authors have detected absorption features in Isolated NS - the physical nature is not known
- but if interpreted as gravitational, redshifts are consistent
- Sahara has \(~3x\) XMM PN and \(25x\) the RGS collecting area at \(E<2\) keV it can easily detect spectral features seen by RGS from several NS (similar resolution to RGS 1.7eV FWHM).

Hambaryan et al 2009, Hohle et al 2011
What is Sahara Missing Compared to IXO?

- Effective area at 6 keV similar to Astro-H reduces AGN and Cluster Fe K band science
 - much can be achieved with lower energy data
 - Cluster chemical abundances from resolution of Fe L complex + other elements
 - Relativistic broad lines are also seen at low energies
- Bright source spectral timing (x-ray binaries)
 - lack of high timing mode strongly limits bright source science-
 similar to Astro-H
 - But NS EOS maybe done with dimmer sources

- Grating instrument for R>600 at E<0.6 keV
 - major impact: difficult to study WHIM in absorption

- Wide field of view 'CCD-like' imager for surveys
 major impact is deep/wide x-ray surveys; high z universe

APPROVED FOR PUBLIC RELEASE/DISTRIBUTION UNLIMITED
Derived Mission Parameters - Telescope Collecting Area

Effective area requirements are set by need to obtain:

1. Good quality spectra with \(\sim 4000 \) cts/resolution element in 100 ksec for \(z<0.1 \) clusters.

2. Reasonable number (~3) serendipitous sources with \(\sim 1000 \) cts in each 100 ksec FOV.

Serendipitous sources:
\[F(x)=7\times10^{-15} \text{ erg/cm}^2/\text{sec-200/sq deg} \Rightarrow \sim 3 \text{ per Sahara FOV or } \sim 600/\text{yr} \text{ in which one can:} \]

- Detect 30 eV physical width (\(10^4 \) km/sec)
- Absorption lines at 1 keV (6 \(\sigma \))
- Doppler shifts with \(\pm 1500 \) km/sec errors
Derived Mission Parameters-
Spectral Resolution/Area

- **All the plasma diagnostics** (Paerels 2003)

- Derive velocities with ~4000 ct spectra: ±35 km/s errors in a 200km/sec turbulence in a 1 keV plasma – cooling flow clusters, ellipticals and SNR

- Abundances of O and Fe can be determined, on a 5x5 sq. arcsec (!) basis with errors of ~30% (assuming CIE)

Obtain plasma diagnostics for ALL abundant metals
Derived Mission Parameters-
Spatial resolution

Set by
- surface brightness of clusters, SNR ellipticals etc
- resolve spatial structure in cluster feedback, SNR
- isolate and identify serendipitous sources
Derived Mission Parameters - FOV

- Choose 8' diameter to encompass r_{500} of M~$5 \times 10^{14} M$ cluster at $z=0.2$.
- Full size of almost all galaxies (except local group)
- Full size of >75 Galactic SNR
- Get >3 serendipitous sources/field with >1000 cts in 10^5 sec exposures

- FOV commensurate with technical requirements of calorimeter array with 'reasonable' number of pixels and sampling of 1/2 PSF/pixel

Clusters with $F_x(0.1-2.4 \text{ keV}) > 9 \times 10^{-17} \text{ cgs}$
REFLEX catalog, Southern sky

SAHARA's Field of View is $8 \times 8 \text{ arcmin}^2$
Meeting the Technical Requirements: Optics

- Design constraint: maximum area in 0.2-3 keV band consistent with Taurus fairing and launch mass into low earth orbit with <5" HPD
 - no extendible bench
 - one mirror
 - 'high' TRL consistent with launch in <10yrs (TRL-5 for 10" in less than 2 yrs TRL-5 for 5" in less than 4 yrs.)
Meeting the Technical Requirements: Optics

- Mirror assembly design - lighter, cheaper, simpler, easier
 - Focal length 4m (cf. IXO’s 20m)
 - 93 shells (cf. IXO’s 360)
 - 250 kg (cf. IXO’s 1800 kg)
- Implementation
 - Segmented design with two radial rings
 - Inner ring: 12 modules
 - Out ring: 24 modules
- Technical Readiness
 - TRL-4 for 10” requirement
 - TRL-3 for 3” goal
Detectors

1.5 eV FWHM requirement, 0.5 eV goal
2.5” single pixels (50 µm)
12x12 array – 30”x30”

3.0 eV FWHM requirement, 1.5 eV goal
2.5” pixels (50 µm) in 3x3 hydras
20x20 hydra, 60x60 pixels, 2.5’x2.5’

4.0 eV FWHM requirement, 2.0 eV goal
5” pixels (100 µm) in 3x3 hydras
32x32 hydra, 96x96 array – 8’x8’

Test results

- ~ 1 eV up to 3 keV
- ~ 4 eV at 6 keV
 - data

- ~ 2 eV for all energies up to 7 keV
 - estimate

- ~ 3 eV for all energies up to 7 keV
 - data

- Excellent microcalorimeter energy resolution
 - for single pixels and for Hydras
- Use of all-gold absorbers
 - great for reliable fast thermalization
- Solid substrate design
 - great for heat-sinking/low cross-talk
- Use of multiple designs on a single silicon chip
 - no variation in back-etching / fabrication
 - less complex focal plane assembly design
- Less sensitive to stray power – very uniform
Meeting the Technical Requirements: Detectors

The first close-packed arrays have been fabricated and tested

TES on 75 micron pitch
Absorber: $65 \mu m \times 65 \mu m \times 5 \mu m$

Design has 1.6 ms decay times
⇒ Regular TDM MUXing could be sufficient and easier than for IXO/AXSIO
⇒ Count rate capability of a few 10’s per second
Meeting the Technical Requirements: Detectors

Hydras – increase field of view for a fixed number of read-out channels

\[<\Delta E>=2.6 \text{ eV @} 6 \text{ keV} \]

3x3 Hydra- small dispersion in \(\Delta E\)

Result is for 3x3 array of 65 \(\mu\text{m}\) absorbers, 5 \(\mu\text{m}\) thick. Sahara outer array has 95 \(\mu\text{m}\) absorbers, 3 \(\mu\text{m}\) thick – similar heat capacity/energy resolution
Conclusions

• Sahara can achieve a large fraction of the IXO science goals and can also be a general purpose observatory
• The cost and risk should be much less than IXO
• All of the components are under development and achievement of the technical requirements is within sight.
• Can build and launch in < 10 years for < 1/5th IXO cost—meet decadal recommendations and fit in NASA budget envelope.

Our team is completely open and we welcome participation
We Want You

To Join the Sahara Team-
lets get a mission going in < 10 years!
Backup
NS EOS

Neutron star cooling is sensitive to the EOS of NS- Sahara will get exquisite physical temperatures of old NS

Spectroscopy:
Solid angle from flux and effective temperature \(R \propto \frac{d}{d}. \)
Cooling \(\Rightarrow \) Internal structure.
Redshifted photospheric lines \(\Rightarrow \) M/R, potentially M/R² and/or \(\circlearrowright \) spin R sin i.
Spectral line profile \(\Rightarrow \) M-R.

Observing thermal spectra from neutron stars yields the surface temperature AND the emitting area and thus its radius Becker (2010)
Cost Trades Leo vs HEO

- I use the analysis done in 2005 for Con-X

LEO advantages-
 - more mass available to solve technical problems
 - cheaper rocket (big difference for Taurus vs Atlas-V)
 - easier communications

LEO disadvantages for Con-X
 - Decreased observing efficiency at LEO: *less true for Sahara* (fast slews-
 Swift gets 72% efficiency, SAA takes 15% of time)
 - Science Operations: *more complicated at LEO*
 - slightly true, but use cheap ground stations rather than DSN- cost savings;
 can be very cheap (RXTE)
 - Mission Operations: *more complicated at LEO*
 - yes, but we have done this for decades, no big deal can be very cheap
 (RXTE)
 - End-of-life disposal- seems no longer to be an issue
 - Harder to cool calorimeter- yes, but solved for Astro-H, Akari, HST etc
 - ACS Subsystem is more complex but another problem solved for 30 years and
 can use magnetic torquers.
other trades

- Reducing the counting rate requirement allows an increase in the multiplexing scale, which enables a larger array and combined with the shorter focal length a much larger field of view (cluster, galaxy, survey science) and for a given field of view fewer pixels.

- Shorter focal length and lower energy prime science allows much smaller heat capacity pixels- factor of ~2-5 better energy resolution

- Shorter focal length allows lighter mirror, smaller spacecraft, rapid slewing.
Sahara Requirements for Science

- Angular resolution and FOV (Chandra data for SNR MSH11-52)
 - Characteristic size of cluster cool cores ~100 kpc is 12” at z=1
 - Virial radius of a massive cluster at z=1 is ~1.5 Mpc (4')
iron physical charge state distribution
vertical structure calculation, R=1.25 Rg

Calculation by Mario Jimenez-Garate; figure provided by Chris Mauche
• NGXO- 1994 response to the NRA
• 3 telescope concept; Sahara is essentially one of them
• In 1995 cost estimated at $500M