The Advanced X-ray Timing Array (AXTAR)

Paul Ray (NRL), Deepto Chakrabarty (MIT), Marc Christophersen (NRL), Bernard Phlips (NRL), Dimitrios Psaltis (Arizona), Ron Remillard (MIT), Colleen Wilson-Hodge (NASA/MSFC), Michael Wolff (NRL), Kent Wood (NRL), for the AXTAR Collaboration

http://xte.mit.edu/AXTAR

Approved for public release, distribution unlimited
AXTAR Basics

Collimated 1.8–80 keV X-ray timing and spectral mission with much larger area than RXTE

- Large Area Timing Array (LATA)
 - 3.2 m² effective area
 - <600 eV energy resolution
 - Low inclination LEO orbit

- Sky Monitor (SM)
 - Multiple coded-aperture cameras (40°x40° FOV each)
 - High duty cycle monitoring of sky
 - < 5 mCrab in 1 day

- Flexible scheduling and rapid response
 - Targets from GI program

Cost Category: Small (<$400M, excluding launch)

Approved for public release, distribution unlimited
AXTAR Basics

Collimated 1.8–80 keV X-ray timing and spectral mission with much larger area than RXTE

- **Large Area Timing Array (LATA)**
 - 3.2 m² effective area
 - <600 eV energy resolution
 - Low inclination LEO orbit

- **Sky Monitor (SM)**
 - Multiple coded-aperture cameras (40°x40° FOV each)
 - High duty cycle monitoring of sky
 - < 5 mCrab in 1 day

- **Flexible scheduling and rapid response**
 - Targets from GI program

Cost Category:
Small (≤$400M, excluding launch)
Fast timing probes short timescales such as the spin of a neutron star or the last stable orbit around a stellar-mass black hole.

A key metric is S/N per unit time (e.g. coherence time of an oscillation or rise time of a burst).

Example: In 1 ms, AXTAR gets S/N >10, while RXTE had S/N <3.

Two IXO science questions were key design drivers for AXTAR:

How does matter behave at very high density?
- Detailed studies of bursts in X-ray binaries

What happens close to a black hole?
- Multiple techniques, including high frequency QPO studies
Burst Oscillations Probe the Structure of Neutron Stars

- Pulse strength and shape depends on M/R or ‘compactness’ because of light bending (a General Relativistic effect).
 - More compact stars have weaker modulations.
 - Pulse shapes (harmonic content) also depend on relativistic effects (e.g. Doppler shifts due to rotation, which depends on R, since the spin frequency is known).

- For sources where phase-resolved spectroscopy is possible, rotational Doppler shift of hot spot emission also sensitive to radius (for known spin rate). This measurement is NOT possible with RXTE due to insufficient sensitivity.

- Model dependence is minimized by small size of spot at burst onset.

![Graph showing least-squares fit for burst oscillations](image1)

Nath, Strohmayer & Swank (2002)
Simulated AXTAR Lightcurve

- Use blackbody emission from neutron star surface.
- Circular hot region which grows linearly with time.
- Flux and spin rate for bursts from 4U 1636-53.
Neutron star mass-radius constraints with AXTAR: Simulation of an X-ray burst oscillation

AXTAR will routinely make 5–10% measurements of neutron star radii in X-ray bursters, thus conclusively discriminating between candidate equations of state for dense matter.
What Happens Close to a Black Hole?

- Multifaceted attack on BH spin
 - Continuum fitting
 - Large area and broad energy coverage are critical
 - Fe lines
 - Needs modest resolution and good coverage of continuum
 - HFQPOs
 - Unsolved problem that AXTAR can solve and integrate into 3-method solution
 - New QPO features distinguishes correct model

- Testing GR
 - Above assumes GR and using Kerr metric to measure BH spin
 - For any one observable (e.g. Fe line profile or single mode frequency) BH spin and deviation from Kerr are highly degenerate
 - Multiple modes or observables can break this and test GR

Two methods have different systematics, different model dependencies

Continuum fitting produces robust, repeatable measurements

Approved for public release, distribution unlimited
Why are HFQPOs Compelling?

- **HFQPOs and Strong Gravity**
 - QPO $\nu \sim$ dynamical frequencies of accretion disk for $R < 10R_g$
 - Stable ν (1st order) for each BH, despite large changes in L_x
 - 3:2 frequency ratio HFQPO pairs \rightarrow common mechanism
 - Roughly $\nu \sim 1/M$ for cases of HFQPOs plus known BH mass
 - Study matter in strong gravity with immunity to (D, A_v, i)

- **Next slide describes how AXTAR can exploit this**
AXTAR Strategy for HFQPOs

- Large area yields high count rates to see weaker features in power spectrum
- Detect HFQPOs and weaker PDS features to rms ~ 0.3% at 5 σ in 10ks for ~20 BHBs
- Analyzing new modes will distinguish models
- Focus on spin (BHs with known mass) and combine HFQPO analyses with spin determinations from continuum fitting and Fe-line analyses.
- Observe BHs (most are transients) many times to cover all states (thermal, steep power law, hard/jet), to witness state transitions, and to sample different luminosities for further inputs for constructing HFQPO theory

D. Psaltis
Technical Requirements

- Effective Area: >3 m² (Recall RXTE was 0.6 m² initially, mostly <0.4 m²)
 - Largest area mission yet flown
- Energy Range: below 2 keV to at least 30 keV
- Achieve high count rates with minimal dead time
- Fast response to transients and state changes; flexible scheduling
- Sky monitor to provide triggers and context information, plus stand-alone science

Table 1. Mission Requirements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Baseline</th>
<th>Drivers</th>
<th>Technology Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Large Area Timing Array (LATA)</td>
<td></td>
</tr>
<tr>
<td>Effective Area</td>
<td>3.2 m²</td>
<td>NS radius, BH QPOs</td>
<td>Mass, cost, power</td>
</tr>
<tr>
<td>Minimum Energy</td>
<td>1.8 keV</td>
<td>Source states, absorption meas., soft srcs</td>
<td>Detector electronics noise</td>
</tr>
<tr>
<td>Maximum Energy</td>
<td>>30 keV</td>
<td>BH QPOs, NS kHz QPOs, Cycl. lines</td>
<td>Silicon thickness</td>
</tr>
<tr>
<td>Deadtime</td>
<td>10%@10 Crab*</td>
<td>Bright sources, X-ray bursts</td>
<td>Digital elec. design, pixel size</td>
</tr>
<tr>
<td>Time Resolution</td>
<td>1 μs</td>
<td>Resolve ms oscillations</td>
<td>Shaping time, GPS, Digital elec.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sky Monitor (SM)</td>
<td></td>
</tr>
<tr>
<td>Sensitivity (1 d)</td>
<td>< 5 mCrab*</td>
<td>Faint transients, multi-source monitoring</td>
<td>Camera size/weight/power</td>
</tr>
<tr>
<td>Sky Coverage</td>
<td>> 2 sr</td>
<td>TOO triggering, multi-source monitoring</td>
<td># cameras vs. gimbaled designs</td>
</tr>
<tr>
<td>Source Location</td>
<td>1 arcmin</td>
<td>Transient followup</td>
<td>Pixel size, camera dimensions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AXTAR Mission</td>
<td></td>
</tr>
<tr>
<td>Solar Avoidance Ang.</td>
<td>30°</td>
<td>Access to transients</td>
<td>Thermal/Power design</td>
</tr>
<tr>
<td>Telemetry Rate</td>
<td>1 Mbps</td>
<td>Bright sources</td>
<td>Ground stations/TDRSS costs</td>
</tr>
<tr>
<td>Slew Rate</td>
<td>> 6° min⁻¹</td>
<td>Flexible scheduling, fast TOO response</td>
<td>Reaction wheels</td>
</tr>
</tbody>
</table>

*1 Crab = 3.2 × 10⁻⁸ erg cm⁻² s⁻¹ (2–30 keV)
Large Area Timing Array (LATA) Supermodule

- Light shield
- Si pixel detector
- Interposer board
- Digital board
- Collimator (not to scale)

2025 cm² per supermodule
20 supermodules for AXTAR

Approved for public release, distribution unlimited
Sky Monitor (SM)

- Same Si pixel detectors provide 2-d imaging when paired with a coded mask
 - Arcminute source localizations
 - $\sim 300 \text{ cm}^2$ area per camera
 - $<5 \text{ mcrab}$ sensitivity (1 day), 20x better than RXTE/ASM

- 32 cameras could provide all-sky continuous coverage
 - Timescales from ms to years
 - Reduced configurations still provide high duty-cycle monitoring

Critical for BH science!
Capabilities

- 1.8–50 keV coverage with $\Delta E < 600$ eV
- Count rate of 120,000 cts/s on 1 Crab
 - S/N > 10 in 1 ms on 1 Crab source!
- Ms exposures on range of X-ray binaries over large luminosity range and transitions through all spectral states
- SM live-sky coverage ~50%
 - Transient source and spectral state monitoring
 - Eyes for GW detectors, tidal disruption events, GRB survey and much more science as well
Technology Development Options

- **Micromachined Tantalum Collimators**
 - Reduce instrument mass by a factor of five
 - Have demonstrated laser machining + chemical etching in NRL’s Nanoscience Institute
 - Need to develop large scale production techniques

- **Silicon Pixel Detectors and Readouts**
 - Optimize for LATA and SM designs

- **Silicon Drift Detectors (SDDs)**
 - Improve energy resolution by a factor of two to <300 eV
 - Improves Fe-line science
 - Reduce power requirements
 - Need to research techniques for making thick (>0.5 mm) SDDs and customize design for X-ray timing

Benefit of an MDL Run

- Initial version of AXTAR concept studied by MSFC Advanced Concepts Office
 - Target was Taurus II launch
 - Collimator was clone of RXTE collimator (20 cm thick BeCu hexagonal cells)

 Study details presented in SPIE paper (arXiv:1007.0988), and NASA/TM-2011-216476

- New study needed for several reasons
 - Large mass reduction from Ta collimator drives redesign of S/V components and structure
 - Without S/V redesign, AXTAR is 2000 kg (RXTE was 3200 kg)

- Independent cost estimate

- MDL run will improve system fidelity and cost confidence in a mission with better performance

Approved for public release, distribution unlimited
Enormous improvement in effective area over RXTE:
7x @ 4keV, 14x @15 keV, 24x @20keV, 36x @30 keV

Recall that QPO S/N scales linearly with area A, not $A^{1/2}$
BACKUPS
BH High Frequency QPOs (100-450 Hz)

- Seen in 8 BH sources
- 4 have pairs of QPOs
 - All consistent with 3:2 ratio
- Frequencies are stable to ~5%
- Always seen in “Steep Power Law” state
- Immune to luminosity changes

QPO rms: 0.8–1.5% 2–5% 0.8–2.4%
Testing General Relativity

Nearly identical Fe-line profiles

For single mode frequency, spin and deviation from Kerr are degenerate

Solution: Measure two fundamental frequencies (e.g. c-mode and g-mode, or Fe line and one mode)

Approved for public release, distribution unlimited
Benefits of More Counts

Key equation for QPO sensitivity:

\[\frac{S}{N} = \frac{1}{2} I r^2 \left(\frac{T}{\Delta \nu} \right)^{1/2} \]

van der Klis (1989)

Implications for 10x increase in area (with similar energy response):

- 1σ detection of a QPO becomes 10σ in same T ⇒ study of fainter QPOs, revealing harmonics, etc.
- 3σ detection in T becomes 3σ detection in 0.01T ⇒ weak detection 200 ks now can be detected and tracked every 2 ks, revealing evolution, true frequency width, correlation with spectral states, etc.