Telescope Design for a Space-based Gravitational Wave Mission

Status report for the L3 Study Team

Jeff Livas NASA Goddard Space Flight Center 23 March 2016

Outline

Telescope Description

- Functional
- Location on the sciencecraft
- High-level requirements
- Technology Readiness Levels (TRLs)
 - Rough development timeline
- Rough description of the work to be done
- System dependencies that affect design and development plans

Telescope Description

• Functional:

- Afocal optical beam expander
 - Classic LISA: 400 mm/5 mm = 80X
 - o eLISA: 200 mm/5 mm = 40 X
- Efficiently deliver power from one S/C to another
 - o "diffraction limited" lambda/30 at 1064 nm (~ 35 nm)
 - High optical throughput
- Smooth wavefront to minimize tilt to length coupling
 - "diffraction limited" minimize wavefront aberrations (astigmatism is the leading term)

Other requirements

- Dimensionally stable optical pathlength
 o in series with the main measurement
- Low scattered light (transmit and received simultaneously)

Inter-Spacecraft Distance Measurement

- Test-mass to test-mass measured in 3 parts:
 - 2 × test-mass to spacecraft measurements (short-arm: LPF tests this)
 - 1 × spacecraft to spacecraft interferometer (long-arm)

total separation = $d_1 + d_{12} + d_2$

Key Telescope Interfaces

Optical

Glasgow NGO optical bench design

Simplified Optical Bench Model

Essential Tx/Rx optics extracted from Glasgow design

- Main interface (for now) is the telescope pupil
- FRED model developed:
 - ideal relay optics added to reduce beam from 5 mm to 1 mm detector dia
 - defines scattered light simplified model for calculation

High-Level Telescope Requirements

		Paramotor	Derived	eLISA flight telescope	Prototype			
		1 al alletel	From	(for reference only)	telescope			
	1	Wavelength		1064 nm	1064 nm			
	2	Wave front Error [WFE] over field of view [FOV]	Pointing	$\leq \lambda/30 \text{ RMS}$	$\leq \lambda/30 \text{ RMS}$			
	3	Field-of-Regard ¹	Orbits	+/- 20 μrad (large aperture)	+/- 20 μrad (large aperture)			
	4	Field-of-View [FOV] ²	Stray light	+/- 8 µrad (large aperture)	+/- 8 µrad (large aperture)			
challenging	5	Telescope subsystem OPD ⁴ stability under flight conditions ⁵	Path length Noise/ Pointing	< 1 pm/ $\sqrt{\text{Hz RMS}}$ $\mathbf{x}\sqrt{1 + \left(\frac{f_0}{f}\right)^4}$ where 0.0001 < f < 1 Hz $f_0 = 0.003 \text{ Hz}$ 1 pm = 10 ⁻¹² m	Maintain RMS WFE (req #2) near room temp (T ~ 20 +/- 3C)			
	6	Afocal magnification	short arm interferometer	200/5 = 40x	200/5 = 40x			
	7	Optical throughput [transmission]	Shot noise	>0.85 at 1064 nm	>0.85 at 1064 nm			
challenging	8	Scattered Light ³	Displacement noise	< 10 ⁻¹⁰ of transmitted power into the receiver FOV	< 10 ⁻¹⁰ of transmitted power into the receiver FOV (verify by model)			
	9	Stop Diameter (D) (large aperture)	Noise/ pointing	200 mm diameter	200 mm diameter			
	10 Stop location (large aperture)		Pointing	Entrance of beam tube or primary mirror	Entrance of beam tube or primary mirror			
	11	Exit pupil location (small aperture)	Pointing	140 mm (on axis) behind primary mirror	140 mm (on axis) behind primary mirror			
	12	Exit pupil diameter (small aperture)	optical bench	5 mm	5 mm			
	13	Focus adjustment	pointing	maintain WFE from room T (300K) to operating (230K) (Verify by model)	Leave provision for manual adjustment			
	14	Mechanical envelope	spacecraft volume	≤ 450 mm length x 300 mm diameter (TBC)	$\leq 600 \text{ mm}$ length x 400 mm diameter or as negotiated			

General Technology Readiness Levels

- TRL 1 Basic principles observed and reported
- TRL 2 Technology concept and/or application formulated
- TRL 3 Analytical and experimental critical function and/or characteristic proof-of-concept telescope now
- TRL 4 Component and/or breadboard validation in laboratory
 environment "environment" includes interfaces, not just Temp, Pressure, etc
- TRL 5 Component and/or breadboard validation in relevant environment ESA's definition is somewhere between these two
- TRL 6 System/subsystem model or prototype demonstration in a relevant environment (ground or space)
- TRL 7 System prototype demonstration in a space environment
- TRL 8 Actual system completed and "flight qualified" through test and demonstration (ground or space)
- TRL 9 Actual system "flight proven" through successful mission operations

ISO TRL Comparison (for reference only)

Table 4-1: Comparison of ISO TRL scale and ESA old TRL scale

	TRLs in old ESA scale	TRLs in new ISO scale			
	TRLs 1 to 4	TRLs 1 to 4 are basically unchanged			
TRL 5	Critical functions verification in representative environment with representative scale breadboards	TRL 5	Same definition as TRL 5 old scale, but allowing reduced scale breadboard verification. Most useful for the development of large pieces (telescopes, structures) and for launcher developments.		
		TRL 6	Same as TRL 5 old scale		
TRL 6	TRL 6Qualification through on ground verificationsTRL 7Qualification through in-orbit demonstration		Qualification level, through validation on ground or in orbit, as needed		
TRL 7					
	TRLs 8-9		TRLs 8-9 are basically unchanged		

From "Guidelines for the use of TRLs in ESA programmes"

Prepared by	ESA TRL Working Group
Reference	ESSB-HB-E-002
Issue	1
Revision	0
Date of Issue	21 August 2013
Status	Approved/Applicable
Document Type	Handbook
Distribution	

ID	Task	20	016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
		Q1 Q2	2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	4 Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4									
1	GOAT recommendations	•																			
2	First LISA Pathfinder in-orbit results																				
3	Call for L3 mission		_]						JUO	nai	431	Jev	eio	pme	ent	SCI	ieat	ле		
4	High priority technology developments	4				Ţ			De	eve	lope	ed b	y E	SA	for	the	Gra	avita	atio	nal	
5	ITT process (rolling over 1/month)								0	bse	rvat	orv	Adv	viso	rv]	[ear	n ((GO/	AT)		
6	High priority TDA (for EM, 3 yr)											_/							,		
7	High priority TDA (for EM, 2 yr)																				
8	Medium priority TDA (for EM)																				
9	Lower priority/late developments																				
10	Payload pre-developments									\	1										
11	AO for payload consortium																				
12	Engineering model									,	1										
13	EM definition					Ц	-														
14	EM development																				
15	EM integration and test					EM	start														
16	Space system development			4																	
17	Phase A ITT		L	-																	
18	Phase A																				
19	Technical assistance					I															
20	Phase B1																				
21	Mission adoption review										♦										unch
22	Margin																			Id	
23	SPC adoption & IPC approval									SPC	\checkmark	-									
24	ITT and contractor selection									Adoptio	n										¥
25	Phse B2/C/D (8.5 years)											4									
26	Launch																				•

One Possible Development Timeline

TELESCOPE STATUS AND WORK TO BE DONE

Previous Work: SiC Spacer Dimensional Stability Demonstration

Spacer Activity Objective

- Develop and test a design for the main spacer element between the primary and secondary mirrors
- M1 M2 spacing identified as critical by tolerance analysis
- SiC meets stability requirement
- On-axis Quadpod would not meet scattered light requirement

SiC Spacer Design: QuadPod

SiC Spacer Design Can Meet Requirements at -65C

Thermal Model to Determine Test Conditions

Temperature [C]. Time = 0 sec

Scatter Suppression Masks

Key challenge:

- Simultaneous transmit and receive telescope operation plus an interferometric detection scheme:
 - combines extreme sensitivity (1 pW)
 - With high dynamic range of coexisting optical powers (~ 10¹⁰)
- On-axis (Narcissus) reflection dominates
- Petaled masks suppress on-axis spot
- Grey-scale masks do better
 - Currently limited by
 - Fabrication errors/defects
- Aaron Spector/Guido Mueller developed spiral mask shape alternative

Currently performance is not yet adequate to use an on-axis design

On-axis (Narcissus) secondary reflection

16-petal mask

Intensity Suppression Using 16-petal Mask

500 600 0 100 200

- Off-axis Cassegrain for stray light performance
- Schwarzschild-style pupil extender
- Simplified Design to reduce mirror cost, risk
- Simplified construction and alignment
- Meets most requirements

Prototype Telescope

Double-pass telescope test setup

Scattered Light Analysis

	Path#	# Rays	Power %	Power	1st scatter surface
3	7	2291695	74.947	4.9421e-11	.20140417_elisa_baseline.M3.Front
4	3	2711030	23.053	1.5201e-11	.20140417_elisa_baseline.M4.Front
2	11	2565386	1.9733	1.3012e-12	.20140417_elisa_baseline.M2.Front
1	14	1399213	0.026184	1.7266e-14	.20140417_elisa_baseline.M1.Front
Totals		8967324	100	6.5941e-11	

21

Scattered Light Test Setup

- Simplified Scattered Light Setup
 - Polarization optics separates input from output beam
 - Modulated laser allows synchronous detection for better noise rejection

Rough idea of work to be done

- Validate scattered light model
 - Surface roughness vs particulate contamination
 - What is achievable on-orbit is not known
 - Realistic baffling and stop/aperture design

Demonstrate stability and scattered light simultaneously

- Materials choice plus good mirror mount design
- Not worrying about light-weighting mirrors, etc

Develop interface specifications

- Interface with optical bench
 - Optical: relay optics to GRS, detectors; scattered light/reflection, point ahead
 - $\circ~$ Thermal: bench is at ~ 300K, telescope is ~ 230K if SiC
 - o Mechanical: stability, etc
- Transmit/receive beams
- System level study
- Investigate In-field guiding
 - scattered light specification may be incompatible
- Other scattered light suppression approaches?
 - Petaled masks
 - Modulation or digital interferometry

	Moveable Optical Assembly	In-Field Pointing
Telescope	Narrow (+/- 200 µrad) field of view Moveable optical assembly +/- 1 deg Beam path fixed through telescope	Wide (+/- 1 deg) field of view Fixed optical assembly; beam moves Small scanning mirror (no piston)
Inter-bench	Back-link fiber	Fixed free-space beam
Issues	Actuator concept demonstrated	Mechanism; Scattered light

aft optics contributes most of the scattered light: in-field pointing needs more |25

SYSTEM DEPENDENCIES

System Dependencies

Telescope Aperture and Laser Power trade

- Key metric is SNR at the detector ($D^4 \times P_{Tx}$ = constant)
- Lower laser power may reduce risk
- Space telescope cost scales with area

• Arm length/Orbits

- Telescope area scales with length $(D^4/L^2 = constant)$
- Point ahead angles depend on L
 - Definitely need a point ahead actuator at 5 x 10⁶ km
 - Probably do not at 1 x 10⁶ km
- Telescope pointing: moveable optical assembly vs in-field guiding
 - o Changes the optical design and/or the field of view specification

Science targets

- Influence overall noise budget balance
 - o high frequency (0.1-1 Hz) performance?
 - o low frequency (0.0001-0.001)
 - o both

¹C is a constant that depends on the beam shape Tx = transmitter, Rx = receiver, L is the arm length, and λ is the laser wavelength, D is the beam diameter

Simplified expression

for the received power¹:

 $P_{Rx} = P_{Tx} \left(\frac{D_{Tx}^2 D_{Rx}^2}{C \bullet L^2 \lambda^2} \right)$

BACKGROUND MATERIAL

Resources Key Facilities

University of Florida/Gainesville

- Dimensional stability measurement
 - Large, instrumented vacuum tank used for spacer stability demonstration
 - Vibration and thermal isolation
 - Frequency stabilized laser
- Need a lead person (postdoc/grad student)

Internal fixtures and vibration isolation

ESA Telescope Work

LISA Telescope Assembly Optical Stability Characterization for ESA

Adrianus L. Verlaan^a, Harmen Hogenhuis^a, Joep Pijnenburg^a, Martin Lemmen^a, Stefano Lucarelli^b, Dietmar Scheulen^b, David Ende^c

a. TNO, Stieltjesweg 1, Postbus 155 2600AD Delft, The Netherlands
b. EADS ASTRIUM, 88039 Friedrichshafen, Germany
c. xperion AEROSPACE GmbH, Claude-Dornier-Str., 88090 Immenstaad Germany,

ABSTRACT

The LISA Optical Stability Characterization project is part of the LISA CTP activities to achieve the required Technonlogy Readiness Level (TRL) for all of the LISA technologies used. This activity aims demonstration of the Telescope Assembly (TA), with a structure based on CFRP technology, that a CTE of 10^{-7} 1/K can be achieved with measures to tune the CTE to this level. In addition the demonstration is required to prove that the structure exhibits highly predictable mechanical distortion characteristics when cooling down to -90°C, during outgassing in space and when going from 1g environment to 0g.

This paper describes the test facilities as well as the first test results. A dedicated test setup is designed and realized to allow monitoring dimensional variations of the TA using three interferometers, while varying the temperature in a thermal vacuum chamber. Critical parameters of the verification setup are the length metrology accuracy in thermal vacuum and the thermal vacuum flexibility and stability. The test programme includes Telescope Assembly CTE measurements and thermal gradient characterization.

Keywords: LISA, NGO, telescope, characterization

- Off-axis design
 - Optically more complicated, mechanically less
- Composite (water outgassing issues)
 - Supports 18 K temperature gradient
- Low CTE goal (10⁻⁷/K)
 - But need to demonstrate optical path length stability

Performance Verification of In-Field Pointing for eLISA

An Experiment to test In-Field Pointing for eLISA

ICSO 2014, Tenerife, Canary Islands, Spain

<u>Christina Brugger</u>¹, Bernhard Broll¹, Ewan Fitzsimons¹, Ulrich Johann¹, Wouter Jonke², Stefano Lucarelli¹, Susanne Nikolov¹, Martijn Voert², Dennis Weise¹ and Gert Witvoet²

¹ Airbus DS GmbH, 88039 Friedrichshafen, Germany

² TNO Opto Mechatronics, 2600 AD Delft, Netherlands

More recent results may be available

10th October, 2014