Mission Architecture Overview

Ira Thorpe, NASA/GSFC On behalf of the L3ST & TAG 2016.03.10

Basic Measurement Concept

Textbook GW detector

Exchange photons between inertial particles to measure variations in curvature caused by GWs.

"Inertial particles" → drag-free test masses

"photon exchange" → heterodyne interferometry

LISA

Sensitivity Curve

- "Rosetta Stone" between instrument performance and science performance
- Other important factors
 - number of arms
 - orbital modulation
 - mission lifetime

Building a Sensitivity Curve

Equivalent Strain Noise

$$S_h = \left| \frac{\partial \tilde{\delta}}{\partial \tilde{h}} \right|^{-2} \left(\left| \frac{\partial \tilde{\delta}}{\partial \tilde{n}_x} \right|^2 S_x + \left| \frac{\partial \tilde{\delta}}{\partial \tilde{n}_a} \right|^2 S_a \right)$$
Arm measurement acceleration response noise noise

Basic Scaling Laws

Mitigating Acceleration noise

Drag-free control systems

- Summary
 - test mass in free-fall inside spacecraft
 - control system maintains relative position and attitude
- Major Components
 - Test Mass / sensor system
 - control laws
 - actuators (thrusters)

LISA Requirement: $\delta \tilde{a} \sim 3\,\mathrm{fm/s^2/\sqrt{Hz}}$

Gravitational Reference Sensor

- Subsystems
 - 6-axis position/attitude sensing
 - 6-axis electrostatic forcing
 - non-contact charge control w/ UV light
 - launch lock & release mechanisms
- Provide Quiet environment
 - 'low' pressure (~1e-6 Pa)
 - thermal
 - magnetic
 - electrostatic
 - gravitational
- Status
 - Major development item for LPF
 - Recent activities in the US on UV charge control and torsion pendulums (Conklin)

LISA Pathfinder GRS

- Test mass: 46mm cube of Au-Pt alloy (2 kg)
- electrode housing with 3-4mm gaps
- electrodes used to sense position/attitude and apply forces/torques
- Non-contact charge control via UV lamps
- Housed in titanium vacuum vessel
- Caged during launch, released to electrostatic suspension on orbit

Control System

- Objectives
 - free-fall of test mass(es)
 - along sensitive axis
 - within measurement band
 - constraints
 - test mass angles
 - test mass positions
 - spacecraft attitude
 - spacecraft orbit
- Status
 - Two systems developed for LPF
 - DFACS system (ESA)
 - DCS system (NASA)
 - LISA project supported some design work

Microthrusters

- Provide position and attitude control of the spacecraft
- Range: 1~100 uN
- Noise: ~ 100nN/Hz^{1/2}
- Status
 - Two systems on LPF
 - Cold gas (ESA)
 - Colloidal (NASA)
 - Other potential candidates
 - FEEPs
 - RITs
 - ...

Colloidal MicroNewton Thruster (JPL/BUSEK)

Cold Gas Microthruster (photos from GAIA)

Displacement Measurement

Long-baseline heterodyne interferometry

Overall Design

- Build constellation from one-way 'links' (4 or 6)
 - 'back links' made at each vertex using an optical fiber.
- each link measurement contains large noise
 + small signal
- combine link measurements on ground to extract signal (TDI). Accounts for varying arm-lengths.
- Fundamental limit is shot noise
- Many other 'technical' noises. Error budget designed so that shot noise dominates.
- Many options to meet overall system requirement (e.g. trade laser power, telescope diameter, etc.)

LISA Requirement for L = 5 Gm:

$$\delta \tilde{x} = 18 \,\mathrm{pm} / \sqrt{\mathrm{Hz}} \left[1 + (f/3 \,\mathrm{mHz})^{-4} \right]^{1/2}$$

Orbit Design & Consequences

- Spacecraft are each on independent orbits
- No 'formation-flying'
- No or minimal station-keeping
- Constellation geometry is time-varying
 - annual effects drive instrument requirements
 - phase meter frequency range
 - laser stability
 - pointing requirements
 - telescope field-of-view
 - secular effects limit lifetime

Orbit Models for Classic LISA

Constellation Pointing

Initial Acquisition for LISA

- Information: orbital ephemeris, star trackers
- Active search & alignment: positional scan, CCD acquisition, quadrant photoreceivers, wavefront sensing

Pointing Maintenance for LISA

- Relative beam angles measured locally using differential wavefront sensing
- Optical Assembly Articulation Mechanism (OATM): Accounts for variation in interior angles of constellation: Io dynamic range
- Point-ahead actuator (PAA): removes angle between transmitted and received beam due to relative transverse SC motion: ~3µrad
- "In-field guiding" Option: replace OATM with wide-FOV telescope and small steering mirror. Possibly eliminate back-link fiber between optical benches

← Major system trade

Single Optical Payload

- each link measurement contains large noise + small signal
- combine link measurements on ground to extract signal (TDI)
- Fundamental limit is shot noise
- Many other 'technical' noises, designed to be hidden underneath shot noise.
 - laser frequency noise
 - optical path length noise
 - geometric cross-talk
 - etc.

<u>Laser</u> provide stable light source

Phase meter
track and measure
time-dependence of interference
frequency and phase stabilization
optical measurement system control

<u>Telescope</u> mitigate diffraction losses

Optical Bench generate interference patterns

Laser subsystem

- Key requirements
 - high power (1~2 W)
 - frequency stable
 - intensity stable
 - modulated for clock transfer
- Subsystems
 - 'seed' or 'master' oscillator
 - phase modulator
 - · power amplifier
- Status
 - No complete system developed
 - LPF laser suitable for seed oscillator
 - NASA effort to develop system around fiber laser (Camp)

Seed laser options

Example laser system

Optical Bench Subsystem

- Key requirements
 - · Dimensional Stability
 - low scattered light
 - accurate construction
- Subsystems
 - fiber injectors
 - pointing mechanisms
 - · back link fiber
- Status
 - Materials and construction techniques developed for LPF. Major technology development item.
 - LISA design studies underway in Europe
 - Some efforts underway in the US (Mueller)

LISA (1 of 6)

Phase measurement subsystem

- Key requirements
 - Large dynamic range (µcycle/Hz^{1/2} noise in MHz/Hz^{1/2} noise)
 - · high linearity
 - large channel count
- Subsystems
 - · photorecievers & analog front-end
 - digital signal processing
 - instrument control (e.g. phase locking, frequency stabilization, etc.)
- Status
 - Major US development efforts during LISA project (Klipstein)
 - Parallel efforts in Europe
 - Laser Ranging Processor for GRACE-FO has similar requirements. Launch 2017?

- Key requirements
 - Optical path length stability
 - thermal / materials
 - Scattered light mitigation
 - · wavefront quality
 - manufacturability (~6 units + spares)
- Subsystems
 - core optics
 - focusing/steering mechanism(s)
 - digital signal processing
 - instrument control (e.g. phase locking, frequency stabilization, etc.)
- Status
 - Some efforts during LISA project (Astrium, GSFC, U Florida)
 - Recent efforts at NASA (Livas)

Design and Prototype at GSFC (Livas)

Related Mission Activities

LISA Pathfinder and GRACE-FO

LPF Measurement Concept

Shrink one LISA arm onto a single spacecraft

- Lose all of the signal
- Keep most of the noise

Key Components

- Spacecraft (ESA)
 - Micronewton thrusters (cold gas)
 - Drag-free control laws
 - Emphasis on mechanical, thermal, & gravitational stability
- LISA Technology Package (ESA & European Consortium)
 - Two gravitational reference sensors
 - Optical Metrology System
 - Thermal/Magnetic Diagnostic System
- ST7-DRS (NASA/JPL)
 - Micronewton thrusters (colloidal)
 - Drag-free control laws (use LTP sensors/actuators)

- 1998: ELITE (European LIsa TEchnology) proposed
 - Homodyne interferometer
 - Launch date 2002
- 2000: ELITE proposed as SMART-2 (Small Missions for Advanced Research in Technology)
 - Two spacecraft, three payloads
 - LISA Pathfinder (ESA), Darwin Pathfinder (ESA), Disturbance Reduction System (NASA)
 - 2001: SMART-2 Descoped and re-named LISA Pathfinder
 - Darwin Pathfinder cancelled
 - single spacecraft, two payloads
 - LISA Technology Package (Europe) and DRS (NASA)
 - 2005: DRS Descoped
 - DRS interferometer and inertial sensor removed
 - DRS control laws and thrusters will use LTP sensors

What we learn from LPF

- First demonstration of high-precision dragfree system
- ~1000x lower disturbance environment than previous missions (e.g. GRACE)
- Measure noise couplings (thermal, magnetic, etc.)
- Gain experience with operating system
- Components relevant to LISA*
 - GRS
 - thrusters
 - optical bench construction
 - laser
 - * Some tweaks needed in all cases, in some cases major changes are needed

- LPF pre-flight best estimate
- - approximate LISA requirement
- Actuation noise (suppressed in drift mode)
- test mass forces (inform LISA design)

Data Continuity for GRACE

- map gravity anomalies by tracking distance between a pair of satellites in LEO
- accelerometer to correct for atmospheric drag
- microwave ranging as primary science instrument
- laser ranging as tech. demo.

Laser Ranging Instrument (LRI)

- First demonstration of inter spacecraft laser interferometry
- LISA "heritage"

What we learn from GRACE-FO

- most LISA-like interferometry configuration likely to fly before LISA
- reduce risk for key LISA components (e.g. phase meter, cavity)
- reduce risk for key LISA operations (e.g. link acquisition)
- LRI could be used to demonstrate specialized LISA measurement techniques such as TDI and arm-locking (McKenzie)

Parameter	LISA	GRACE-FO
Arm Length	~ 5 x 10 ⁶ km	~ 270 km
Round-trip time	~ 33 s	~ 1.8 ms
Tx Laser Power	~ 2W	~ 25mW
Aperature	~30 cm	~1 cm
Rx Laser Power	~ 100 pW	~ 100 pW
Doppler Amplitude	~20 MHz	~ 18 MHz
Doppler Period	1 year	~90 min
Launch Date	~2034	2017

Considerations for L3ST

From the Charter

The L3ST shall provide the following:

- Analysis of potential NASA hardware contributions to L3;
- Assessment of the technology development needed for potential NASA hardware contributions to L3 including cost and schedule;
- Assessment of their total delivery cost, science, and risk consequences;

•

Reference point: LISA Project Formulation Agreement

- ESA develops the three LISA Opto-mechanical Core Systems (LOCS) and verifies them individually
- JPL develops the three LISA Instrument Metrology and Avionics Systems (LIMAS), integrates them to the three LOCS and verifies that they function together as a 3-arm interferometer before and after integration onto the spacecraft buses. JPL also supplies LOCS sub-assemblies/components to ESA
- GSFC integrates each LOCS/LIMAS assembly onto a spacecraft bus to form a sciencecraft, adds the constellation software, verifies that the three sciencecraft, individually and together, fulfill the performance requirements
- Procurement of flight micropropulsion elements will be decided at a later stage depending on technology maturity.

Input from GOAT (1 of 2)

LISA-Relevant Technologies receiving some NASA funding in the past several years:

- telescope subsystem
- phase measurement subsystem
- laser subsystem
- micronewton thrusters
- arm-locking demonstration for laser stabilisation
- gravitational reference sensor
- multi-axis heterodyne interferometry (testmass/interferometer interface)
- ultraviolet LEDs for test mass charge control
- optical bench designs to facilitate manufacturing
- inter-spacecraft interferometry demonstration on GRACE Follow-on

Input from GOAT (2 of 2)

"From its inception, the former LISA mission was a productive collaboration among scientists in Europe and the US, striving to achieve the outstanding science promised by the L3 Gravitational Wave mission. The Committee suggests that such a mission will be more robust, and provide a greater science return per euro, if the US could consider a larger contribution, including a reestablishment of a meaningful collaboration currently restricted by funding availability in the US, and the provisional cost cap on non-European participation. The Committee has confidence that ESA can continue leadership in this new scientific frontier while encouraging a larger participation by the US"

Klipstein: We want to encourage productive collaboration between Europe and the US, beyond just widgets.

Prior Documents

2013 NASA GW
Technology
Development Plan

- Last major review of LISA technology undertaken in the US
- Presented development estimates for each technology.
- http://pcos.gsfc.nasa.gov/docs/TDR_GW_2013Nov21.pdf

2010 LISA Technology Status Summary

- Last joint NASA/ESA Technology Status Summary
- Assumed Baseline LISA Partnership
- http://lisa.gsfc.nasa.gov/Documentation/LISA-MSE-RP-0001.pdf

2005 NASA LISA Technology Development Plan

- Last formal project development plan with milestones, etc.
- Not available online