Gamma-ray White Papers from Astro2010

John Tomsick

May 2018

Astro2010 White Papers - basics

- Deadline: Feb. 15, 2009
- Types:
 - Science (341 WPs submitted)
 - State of the profession (69 WPs submitted)
 - Technology development (66 WPs submitted)
 - Theoretical, Computation, and Laboratory Astrophysics (8 WPs submitted)
- 7 page limit for science
- 10 page limit for other types

Astro2010 Call for Science White Papers

- Categories for science WPs mirror the 5 Science Frontier Panels (SFPs)
 - Planetary Systems and Star Formation (PSF)
 - Stars and Stellar Evolution Panel (SSE)
 - The Galactic Neighborhood Panel (GAN)
 - Galaxies Across Cosmic Time Panel (GCT)
 - Cosmology and Fundamental Physics Panel (CFP)
- Many WPs are in more than one category/SFP

Astro2010 Call for Science White Papers

- WP call included the "Charge to the Panels"
 - Identify new scientific opportunities
 - Describe the scientific context
 - Describe the key advances needed
 - List up to 4 central questions that are ripe for answering
 - Plus a Discovery Area (added later)
- WP call included advice: "Focus on the Science"
 - WPs will be of most use to the SFPs if they identify directly specific critical questions and opportunities as well as the potential measurements and/or theoretical advances that will address them.

Results for the Panel on Electromagnetic Observations from Space (EOS)

TABLE 6.2 The Questions Posed by the Astro2010 Science Frontiers Panels, Correlated with the Activities Recommended by the EOS Panel

 Message for GammaSIG: We need to get our questions on these lists

TABLE 6.2 Continued

Science	Frontiers Panel Question/Discovery Area	WFIRST	IXO	EXO- Planet	BLISS SPICA	UV- Optical Telescope
GAN-1	What are the flows of matter and energy in the circumgalactic medium?					
GAN-2	What controls the mass-energy-chemical cycles within galaxies?					
GAN-3	What is the fossil record of galaxy assembly from the first stars to the present?					
GAN-4	What are the connections between dark and luminous matter?					
GAN-D1	Time-domain astronomy					
GAN-D2	Astrometry					
GCT-1	How do cosmic structures form and evolve?					
GCT-2	How do baryons cycle in and out of galaxies, and what do they do while they are there?					
GCT-3	How do black holes grow, radiate, and influence their surroundings?					
GCT-4	What were the first objects to light up the universe, and when did they do it?					
GCT-D	The epoch of reionization					
CFP-1	How did the universe begin?					
CFP-2	Why is the universe accelerating?					
CFP-3	What is dark matter?					
CFP-4	What are the properties of neutrinos?					
CFP-D	Gravitational wave astronomy					

NOTE: Darker color indicates a strong impact of the facility on answering the question. "Exoplanet" entries correlate the PSF questions with several proposed missions, as described in the panel report text. The maroon squares under "UV-optical telescope" refer to a possible planet-finding and characterization capability.

Results for the Panel on Particle Astrophysics and Gravitation (just showing 2 SFPs)

TABLE 8.8 Continued TABLE 8.8							TABLE 8.8 Continu	.tinued							
	Missions							Missions							
Science Question	LISA	Pulsar Timing Array	Lunar Laser Ranging	AGIS/CTA	HAWC	ULDB	Auger N	Science Question	LISA	Pulsar Timing Array	Lunar Laser Ranging	AGIS/CTA	HAWC	ULDB	Auger N
Stars and Stellar Evolution						_		Cosmology and							
SSE 1: How do rotation and	_	-	-	Gamma rays from stars,	Gamma rays from stars,	-	Ultrahigh- energy cosmic-	Fundamental Physics			_				
magnetic fields affect stars?	1			binary systems, supernova remnants	binary systems, supernova remnants		ray probe of galactic magnetic field relevant for star formation	CFP 1: How did the universe begin?	Gravitational waves are direct probe of early universe	Gravitational waves are direct probe of early universe	Tests of general relativity	_	_	_	_
SSE 2: What are the progenitors of Type la supernovae?	White-dwarf/ white-dwarf binaries in galaxy,	Provides pulsar survey	_	-	-	-		CFP 2: Why is the universe accelerating?	Strong, direct tests of general relativity from gravitational wave sources	Gravitational wave background model dependent	Tests of general relativity	_	_	_	_
	progenitors of Type Ia supernovae							CFP 3: What is dark matter?	_	_	_	Indirect dark matter searches (gamma rays from dark	Indirect dark matter searches (gamma rays from dark	Indirect dark matter searches (positrons, anti- nuclei,)	-
SSE 3: How do the lives of massive stars end?	Black holes from the first generation of stars	Provides millisecond pulsar survey	_	Gamma rays from gamma-ray bursts (GRBs), supernova remnants	Gamma rays from GRBs, supernova remnants	-	Cosmic rays and neutrinos from GRBs	CFP 4: What are the properties of neutrinos?	_	-	-	matter halo) —	matter halo) —	Greisen- Zatsepin- Kuzmin (GZK)	Ultrahigh- energy GZK cosmic rays and neutrinos
SSE 4: What controls the mass, radius, and spin of compact	>10 ⁴ compact binaries in the galaxy	Requires discrete sources	_	-	_	-	_	Discovery area:	Open low-	Open very-	-	_	_	neutrinos	_
stellar remnants? Discovery area: Time-domain surveys	Binary black hole mergers and extreme	-	-	_	Gamma-ray transients	-	-	Gravitational wave astronomy	frequency window— very rich in astrophysical sources	low-frequency window— possibly best chance to detect cosmological					
	mass ratio inspirals							NOTE: Shaded entry,	background						

- Gamma-rays did pretty well in the SSE and CFP panels
- Not shown, but also GRBs/AGN/blazars in GAN and GCT panels

Proposed Program of Activities – Astro2010

- Large Space Projects
 - WFIRST
 - Explorer Program Augmentation
 - LISA
 - IXO
 - (EXIST and SIM were not included in the recommended program)
- Medium Space Projects
 - New Worlds Technology Program (prep. for a planet-imaging mission)
 - Inflation Probe Technology Program (CMB polarization)
- Small Space and Ground Projects (11 listed)
 - E.g., A&A Research Grants/NSF, ATP/NASA, Lab. Astro/NASA
 - U.S. contribution to SPICA (if e-ASTROGAM had been selected)
 - Intermediate Technology Development
 - Suborbital program

Astro2010 White Papers

- White papers available at <u>http://sites.nationalacademies.org/bpa/bpa_050603_and</u> <u>http://www8.nationalacademies.org/astro2010/publicview.aspx</u>
- Examples relevant to GammaSIG (quickly found a dozen or so)
 - Hunter et al., "Medium Energy Gamma-Ray Astrophysics"
 - EXIST-related
 - Gridlay et al., "Measuring the Accreting Stellar and IMBH Populations..."
 - Hartmann et al., "Tracing the Cosmic Star Formation History to its Beginning [w/ GRBs]"
 - Coppi et al., "Lifting the Veil on the BH-Galaxy Connection"
 - Leising et al., "Nuclear Gamma-Ray Astrophysics"
 - Diehl et al., "Astrophysics with Radioactive Atomic Nuclei"
 - McConnell et al., "X-ray and Gamma-ray Polarimetry"
 - Wulf et al., "Semiconductor Compton Imager and Polarimeter (SCIP)" Technology

Backup

- I left some of the slides (slightly edited) from the WP list we made around the time of the HEAD meeting.
- I could imagine the discussion leading into these
- However, the information in the following slides might be better for a separate presentation (or just to put up when we are dividing up into groups)

List of Probe class projects (hard X-ray to gamma-ray)

- Transient Astrophysics Probe (TAP) J. Camp, J. Racusin
- Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X) – P. Ray
- All-sky Medium Energy Gamma-ray Observatory (AMEGO) J. McEnery
- X-ray Polarimetry Probe (XPP) H. Krawczynski
- The High-Energy X-ray Probe (HEX-P) F. Harrison

List of WPs relevant to GammaSIG

- Radionuclide Astronomy Chris Fryer
- Dark Matter in the MeV regime Regina Caputo
- GRB Polarimetry Mark McConnell
- Lunar Occultation Technique and LOX Richard Miller

List of WPs relevant to GammaSIG

- MeV Science with Compton Cameras
 - SMILE, ETCC (Hamaguchi), COSI (Boggs/Tomsick), AMEGO and e-ASTROGAM (McEnery)
- Particle Acceleration
 - E.g., Colliding Wind Binaries (Kenji Hamaguchi)
- Science enabled with high energy resolution at hard X-rays
 - SCOTTI (Fabian Kislat) goes from 0.5-100 keV, but because of XARM, this WP might need to be based on the 10-100 keV science (⁴⁴Ti, CRSFs)
- Science enabled with optical/IR measurements of prompt GRB emission
 - Need GRB positions at the few arcmin level for rapid (~10 seconds) repointing with a multi-band optical/IR instrument (Bruce Grossan)
- Inverse Compton in Star-Forming Galaxies (HEAD presentation by Tonia Venters)
- U.S. Participation in e-ASTROGAM (with Alessandro de Angelis)
- Synergies between TeV (HAWC/SGSO/CTA) and MeV/GeV (Fermi/AMEGO)
 - Possible involvement from P. Huentemeyer, G. Vianello, T. Weisgarber, D. Williams

List of WPs relevant to GammaSIG

- AGN (Eileen Meyer, Filippo D'Ammando, Rani Bindu expressed interest, but unclear whether they have the same science focus and whether this is a single or several WPs)
- Type Ia SNe and All-Sky MeV (Richard Miller)
- Flare stars (Lisa Winter)