γ -Ray Polarimetry with e^+e^- Pairs

Technology investment FIGSAG meeting, 23 May 2024

Denis Bernard,

Laboratoire Leprince-Ringuet (LLR) Ecole Polytechnique, CNRS/IN2P3, 91128 Palaiseau, France

γ -Ray Polarimetry with e^+e^- Pairs

- Science drivers
- Measurement Techniques
 - Compton scattering, $E < 1 \, {\rm MeV}$
 - $-e^+e^-$ pair conversion, $E > 1 \,\mathrm{MeV} \quad \Leftarrow \quad$ This talk

γ -Ray Linear Polarimetry

•
$$\frac{\mathrm{d}\Gamma}{\mathrm{d}\phi} \propto (1 + AP \cos\left[2(\phi - \phi_0)\right]),$$

- P source linear polarization fraction
- ϕ_0 source polarization direction
- A process polarization asymmetry
- ϕ event azimuthal angle

 $\phi \equiv (\phi_+ + \phi_-)/2$, "bissectrix", optimal P. Gros+, Astropart.Phys. 88 (2017) 30

QED Polarization Asymmetry

Summation of numerous Rutherford scatterings \Rightarrow Gaussian-distributed deflection $\mathcal{N}(0, \theta_0)$,

$$\theta_0 = \frac{13.6 \,\mathrm{MeV}/c}{\beta p} \,\sqrt{\frac{x}{X_0}} \,(1 + \mathrm{small \ term}) \qquad \qquad \mathrm{The \ Particle \ Data \ Group \ pdf}$$

p, βc particle momentum and velocity; x, X_0 , slab thickness and radiation length.

Multiple Scattering: Polarization Asymmetry Dilution

Dilution: Full Simulation

Full (5D) simulation of the dilution of the polarization asymmetry as a function of wafer thickness normalized to radiation length

5D polarized differential cross section, in Bethe-Heitler variables, M. M. May, Phys. Rev. 84 (1951) 265

Adapted from D.B., Nucl. Instrum. Meth. A 729 (2013) 765 with $\phi \equiv (\phi_+ + \phi_-)/2$,

P. Gros+, Astropart.Phys. 88 (2017) 30

Pair Opening Angle

Vertical line: high-energy asymptotic most probable value $\hat{\theta}_{+-} = \frac{1.6 \text{ rad} \cdot \text{MeV}}{E}$ H. Olsen, Phys. Rev. 131 (1963) 406

Asymptotically, θ_{+-} distribution scales with 1/E

Huge high- θ_{+-} tail.

D. B., Nucl. Instrum. Meth. A 899 (2018) 85

Past Achievements (1) Small Acceptance Polarimeter on Beam

JLab polarimeter prototype characterization

- 1.5 2.4 GeV γ -ray beam @ SPring8, Inverse Compton of linearly polarized 351 nm laser on 8 GeV e^- .
- 100 micron Carbon converter (CC)
- Leptons travel away in vacuum straight section (VS)
- Silicon micro-strip detectors (MSD) meters downtream.
- 0.02% efficiency

C. de Jager et al., Eur. Phys. J. A 19 (2004) 275.

Past Achievements (2) Large Acceptance Homogeneous Detectors

Emulsions (GRAINE)

sub- μ m resolution, high density converter

S. Takahashi *et al.*, PTEP **2015** (2015) 043H01

K. Ozaki et al., NIM A 833 (2016)165

Gas time-projection chambers (TPC) (HARPO)

sub-mm resolution, low density converter

D.B., NIM A 936 (2019) 405

P. Gros et al., Astropart.Phys. 97 (2018) 10

Silicon-detector Active targets: The Fermi LAT

Layer \equiv pair of single-sided SSD + W foil W. B. Atwood *et al.* [Fermi-LAT Collaboration], Ap. J. 697 (2009) 1071.

Analysis based on 2 first layers.

Event Configuration in Next Layer

Fermi-LAT: Effective Polarization Asymmetry

- The Fermi-LAT is a γ -ray polarimeter !

D.B., Nucl.Instrum.Meth.A 1042 (2022) 167462 Also Fermi Symposium, Johannesburg, 2022

- A small; peaks at A pprox 0.02 for $E pprox 200 \, {
 m MeV}$ (D pprox 0.1)
- Results confirmed by full (GLEAM + G4BetheHeitler5DModel + dedicated event reconstruction and event selection) analysis,
 Adrien Laviron+ [Fermi-LAT Collaboration], PoS ICRC2023 (2023) 721

Pixel detectors

The All-sky Medium Energy Gamma-ray Observatory eXplorer (AMEGO-X)

R. Caputo+, J. Astron. Telesc. Instrum. Syst. 8 (2022) 044003

Kalman-filter optimal tracking: Single-track polar-angle precision

(conversion at bottom of wafer)

AMEGO-X detector parameters

 $\sigma,$ single layer precision (pitch $/\sqrt{12})$

 ℓ , wafer spacing

 p_1 , "characteristic" detector tracking momentum (D.B. Nucl. Instrum. Meth. A 729 (2013) 765)

\Rightarrow Use of the 2-layer method

If conversion in the fat of the wafer, in addition MS inside the wafer, see slides 5 - 7.

Pixel detectors: Performance

- Cluster hit pixels having a side in common
- Request 1 cluster in conversion wafer, 2 clusters in next wafer

– $A \approx 0.08$ at low energy

- Figure of merit sizeable between 10 and 100 MeV

Conclusion

No doubt high-energy γ -ray polarimetry has a bright future.

Silicon-detector active-targets, the 4-leaf clover γ -ray telescopes of the 21st Century ?

Back-up slides

Differential Cross Section; Simulation Thereof

- Differential Cross Section
 - Non Polarized Bethe and Heitler, Proc.Roy.Soc.Lond. A146 (1934) 83
 - Polarized Berlin and Madansky, Phys. Rev. 78 (1950) 623
 (in Bethe-Heitler variables May, Phys. Rev. 84 (1951) 265.)
 - G4BetheHeitler5DModel, a Geant4 "Physics Model" (Event Generator)

 PDF sampling characterization
 Nucl. Instrum. Meth. A 899 (2018) 85

 Implementation
 Nucl. Instrum. Meth. A 936 (2019) 290

 Geant4 documentation
 Physics Reference Manual

 Example: TestEm15
 examples/extended/electromagnetic/TestEm15

 G4BetheHeitler5DModel talk
 Journées Théorie PNHE 2018

 Geant4 EM talk at CHEP 2018, V. Ivantchenko
 EPJ Web Conf. 214 (2019) 02046

Measurement Precision

Optimal Measurement with Moments

– $p(\Omega)$ the pdf of set of variables Ω

– Weight $w(\Omega)$, $\mathrm{E}(w)$ function of P, and variance σ_P^2 minimal;

- A solution,
$$w_{\text{opt}} = \frac{\partial \ln p(\Omega)}{\partial P}$$
 e.g.: Tkachov, Part. Nucl. Lett. 111 (2002) 28

Polarimetry:
$$p(\Omega) \equiv f(\Omega) + P \times g(\Omega)$$
,

$$w_{\text{opt}} = \frac{g(\Omega)}{f(\Omega) + P \times g(\Omega)}.$$

• If
$$\mathcal{A} \ll 1$$
, $w_0 \equiv 2 \frac{g(\Omega)}{f(\Omega)}$, and
• 1D "projection", $\Omega \equiv \phi$, $p(\Omega) = (1 + \mathcal{A}P \cos [2(\phi)])$:

$$w_1 = 2\cos 2\phi$$
, $E(w_1) = \mathcal{A}P$, $\sigma_P = \frac{1}{\mathcal{A}\sqrt{N}}\sqrt{2 - (\mathcal{A}P)^2}$,

D.B., Nucl. Instrum. Meth. A 729 (2013) 765

Unknown polarization angle ϕ_0

$$P = \frac{2}{A} \sqrt{\langle \cos 2\phi \rangle^2 + \langle \sin 2\phi \rangle^2} \quad \sigma_P \approx \frac{1}{A} \sqrt{\frac{2 - (A \times P)^2}{N}}$$
$$\phi_0 = \frac{1}{2} \arctan\left(\frac{\langle \sin 2\phi \rangle}{\langle \cos 2\phi \rangle}\right) \qquad \sigma_{\phi_0} \approx \frac{1}{AP\sqrt{2N}}.$$

F. Kislat+, Astropart. Phys. 68 (2015) 45

$Circular \ Polarization \ ?$

- The "Bethe-Heitler" polarized differential cross section used here
 - Involves photon linear polarization only
 - Sums on the polarizations of the final leptons
 - Uses the first term of the Born series
- To measure the photon **circular** polarization, either
 - Perform triplet conversion ($\gamma e^- \rightarrow e^+ e^- e^-$) on a tank of polarized electrons ? G.I. Gakh et al., Prob. Atomic Sci. Technol. **2012N1** (2012), 97 ?
 - Analyze the polarization of the final leptons ?
 H. Olsen and L. C. Maximon, Phys. Rev. 114 (1959) 887.
 - Tackle the second order of the Born series ?
 H. Olsen and L. C. Maximon, Il Nuovo Cimento 24(1962) 186 , H Kolbenstvedt, H Olsen Il Nuovo Cimento A 40 (1965) 13