Next Generation X-ray Optics: High Resolution, Light Weight, and Low Cost

William W. Zhang

NASA Goddard Space Flight Center
NGXO Team

M.P. Biskach1, P.N. Blake, K.W. Chan2, M. Hong1, L.D. Kolos, J.R. Mazzarella1, R.S. McClelland1, T.T. Saha, M.J. Schofield1, M.V. Sharpe1, W.W. Zhang

\textit{NASA Goddard Space Flight Center}

1 Stinger Ghaffarian Technologies, Inc.

2 University of Maryland, Baltimore County

J.A. Carter, J.A. Gaskin, W.D. Jones, J.J. Kolodziejczak, S.L. O’Dell

\textit{NASA Marshall Space Flight Center}
Process of Building a Telescope

- \(\sim 10^4 \) Mirror Segments
- \(\sim 10^2 \) Modules
 Each containing \(\sim 10^2 \) mirror segments
- One or several mirror assemblies
Three Metrics

- Angular resolution
- Effective area (per unit mass)
- Production cost (per unit effective area)
 - Field of view (shorter shell length)
 - Energy bandwidth (multilayer coating)
Objectives

- **Point of departure (2002)**
 - Suzaku’s resolution (~120 arcsecs)
 - Suzaku’s eff. area per unit mass
 - Suzaku’s cost per unit area

- **Near term (2014)**
 - XMM-Newton’s resolution (~10 arcsecs)
 - Suzaku’s eff. area per unit mass
 - Suzaku’s cost per unit area

- **Long term (~2020)**
 - Chandra’s resolution (~0.5 arcsecs)
 - Suzaku’s eff. area per unit mass
 - Suzaku’s cost per unit area
Development History & Future

<table>
<thead>
<tr>
<th>Year</th>
<th>Mirror Segment</th>
<th>Alignment & Bonding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Technique</td>
<td>Contribution to HPD (")</td>
</tr>
<tr>
<td>2002</td>
<td>Slumped glass with epoxy replication</td>
<td>60</td>
</tr>
<tr>
<td>2007</td>
<td>Slumped glass</td>
<td>10</td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>2013</td>
<td>Single Crystal Silicon (Machine & Polish)</td>
<td>~1</td>
</tr>
<tr>
<td>2014</td>
<td></td>
<td>~0.1</td>
</tr>
<tr>
<td>2018</td>
<td></td>
<td>~0.1</td>
</tr>
</tbody>
</table>
Glass Slumping (Zhang et al.)

- Simple, Reliable, Mature
- Producing good and consistent results
- Need to reduce mandrel cost & schedule

No. of Pairs per 0.5 Bin

All substrates
No selection

With Selection:
~6” HPD

Mirror Pair Performance (ArcSecond HPD)
Three Developments Since Chandra

- Fast and accurate measurement of segmented mirrors
 - Fizeau interferometers
 - Easily designed and built cylindrical null lens
- Commercially available deterministic polishing machines
 - QED: Magneto-Rheological Finishing (MRF)
 - ZEEKO: Intelligent Robotic Polishing (IRP)
 - Others….
- Abundantly and cheaply available large blocks of mono-crystalline silicon
 - “Perfect” single crystals: “Free” of internal stress
 - High thermal conductivity and relatively low CTE
 - Can be machined using precision wire-EDM
New Method for Fabricating Mirror Segment (Zhang et al.)

1. Procure mono-crystalline silicon: easy and cheaply available.
2. Apply heat and chemical treatments to remove all surface/subsurface damage (fast & cheap)

1. W-EDM machine conical shape (fast & cheap)
2. Apply heat and chemical treatments to remove damage (fast & cheap).
3. Polish using modern deterministic technique to achieve excellent figure and micro-roughness (fast & cheap? Need demonstration)

1. Slice off (using W-EDM) the thin mirror segment (fast & cheap)
2. Apply heat and chemical treatment to remove all damage from back and edges (fast & cheap)
Proof of Principle: Fabricate and then Light-weight

Before Light-weighting
55 mm thick (~0.1”)

After Light-weighting:
~2 mm thick (~0.5”)

1. What’s causing the degradation from ~0.1 to ~0.5”?
2. Would light-weighting to 0.5mm work as well?
Progression of Work

• **FY2102:** Demonstrate principle using flat mirrors – 2012 *(almost done)*
 – Polish a thick 55mm flat mirror
 – Slice off a wafer ~1mm thick
• **FY2013:** Make separate parabolic/hyperbolic segments or combined P-H segment *(lining up companies)*
• **FY2014:** Minimize cost maximize production efficiency
Coating: Sputter vs. ALD (Chan et al.)

1) Precursor pulse
2) Purge
3) Oxidant pulse
4) Purge
Alignment and Bonding
(Biskach et al.)

Drawing not to scale
Technology Development Module
(X-ray Performance Test)

3 Pairs
Co-aligned
Bonded
Module Engineering and Environmental Testing (McClelland et al.)

- Vibration test fixture designed and built
- Static and dynamic analyses completed
- Test being conducted today
Important Issues Being Worked On

- **Forming mandrels**
 - Increase rate of production
 - Decrease cost of production

- **Coating (Sputtering & Atomic layer deposition)**
 - Minimize figure distortion due to stress

- **Thermal environments**
 - CTE mismatch between mirror and housing
 - Potential lack of thermal equilibrium between mirror and housing

- **Epoxy instability**
 - Cure over long periods of time
 - Sensitivity to moisture
 - Visco-elasticity
Prospects

• Near term (1 to 2 yrs)
 – XMM’s angular resolution: ~10 arcseconds
 – Suzaku’s weight and cost
 – To enable AXSIO, N-CAL, N-XGS, N-WFI, and Explorer missions

• Long term (3 to 10 yrs)
 – Chandra’s angular resolution or better
 – Suzaku’s weight and cost per
 – To enable Generation-X, SMART-X…
Necessary and Sufficient Conditions for Making Good X-ray Optics

• Reasonable and adequate funding
• Competent people
• Good ideas
• Clear and well-formulated objectives
Acknowledgements

PCOS Program Office
ROSES/SAT
ROSES/APRA
GSFC/IRAD