

BurstCube Team

PI: Jeremy Perkins (NASA/GSFC)

Clemson Dieter Hartmann

CRESST/GSFC

John Krizmanic Israel Martinez

CUA/GSFC

Alessandro Bruno

Teresa Tatoli

Delaware

Isabella Brewer

GWU

Sylvain Guiriec

Alyson Joens

Grant Mitchell

Pi Nuessle

NASA/MSFC

Michelle Hui Daniel Kocevski

Colleen Wilson-Hodge

LSU Eric Burns

NASA/GSFC

Regina Caputo Brad Cenko

Georgia de Nolfo

Carolyn Kierans Julie McEnery

Judith Racusin

Lee Mitchell

Jacob R. Smith

Website: https://asd.gsfc.nasa.gov/burstcube/

UAH

Michael Briggs

Boyan Hristov

UCD

Lorraine Hanlon

Sheila McBreen David Murphy

Alexey Uliyanov

Sarah Walsh

UMD

Peter Shawhan

USRA

Adam Goldstein Oliver Roberts

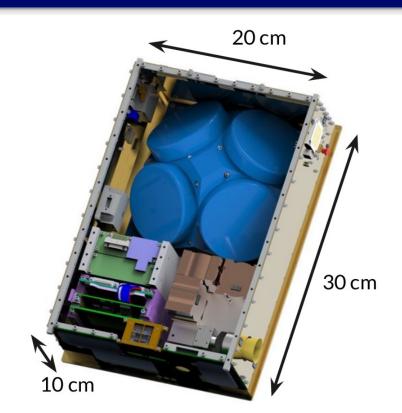
UVI

Antonino Cucchiara

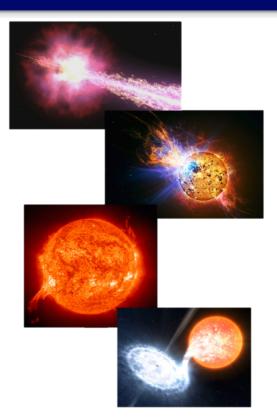
David Morris

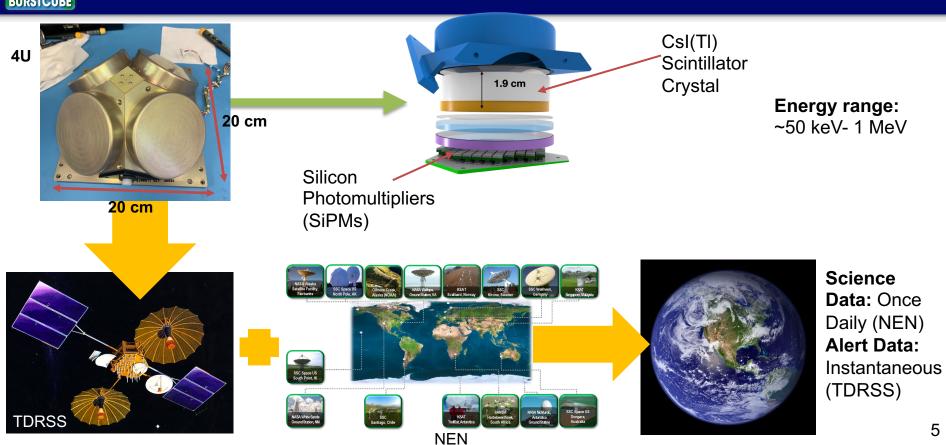
Wisconsin

Sean Griffin



Overview


 6U CubeSat with the primary science goal to detect, localize, and characterize short gammaray bursts (SGRBs)


BurstCube Science

- Low earth orbit
- BurstCube will detect GRBs from the entire unocculted sky
 - Broadband spectra
 - Rough localizations for follow-up
 - Accurately timed light curves
- BurstCube will also detect solar flares, magnetar flares, and other transients.
- Combined with Fermi and Swift, BurstCube will provide all-sky coverage for a small fraction of the cost of an Explorer mission

BurstCube Instrument

5

Mission Performance

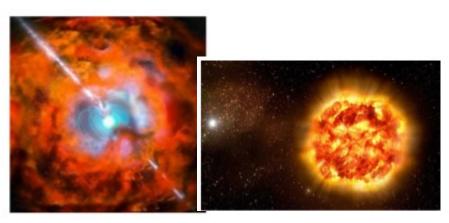
Energy range: ~50 keV - 1 MeV

Energy resolution: 10% at 662 keV

Field of View: ~50% of the sky

(instantaneous)

BurstCube:


SGRBs: ~20 per year

LGRBs: >100 per year

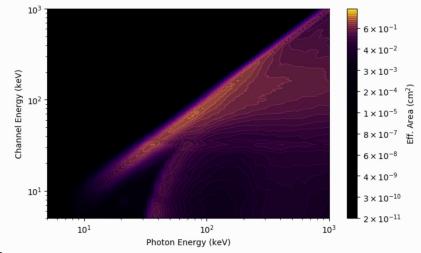
GBM:

SGRBs: ~40 per year

LGRBs: ~200 long per year

Data products

- Various data products
 - Binned and event data
 - Public immediately upon processing
- Requested time-tagged event data, including by community request


Datatype	Latency	Type	Energy Channels	Time Resolution	Time Coverage
ATD	~15 min	Trigger	16	50 ms to 2 s	-60 to +60 s
T^3E	~1 day	Trigger	1024	10 μs	-30 to 100 s
RTTE	~1 day	Requested	1024	10 μs	requested
CBD	~1 day	Continuous	16	256 ms	continuous

Analysis software: bc-tools

Detector-agnostic API for counting gamma-ray instruments

- Will allow for
 - Data processing
 - Localization
 - Detector response generation
 - Data binning and light curve generation
 - Spectral fitting
- Built on top of GBM Data Tools
 - Python library developed to analyze GBM data
- Open source: https://gitlab.com/burstcube/bc-tools

https://svs.gsfc.nasa. gov/gallery/cubesats/

Credit: NASA/Jeanette Kazmierczak

Current Status

- Launched March 21st to the ISS.
- Deployment expected ~April 18th.
- Short checkout period, then science operations.
- BurstCube data will be public at the HEASARC, along with the bc-tools
- Event data can be requested (RTTE)

Backup slides...

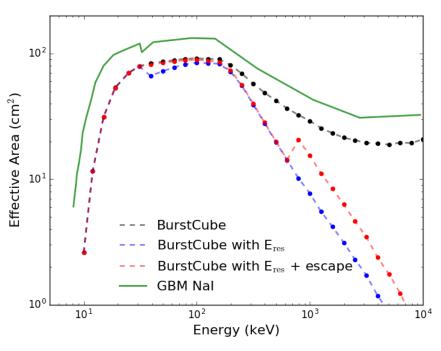
BurstCube Detector Overview

Quartz window allows scintillation light to escape (the inside of the can is covered in a diffusively reflective material)

SiPM arrays are mounted to the Instrument Detector Analog Board (IDAB) which sums the signals. A single analog signal (hit) comes out of a detector indicating a single photon interaction. The signal amplitude is proportional to the energy of the gamma-ray.

BURSTCUBE

Silicon Photo-Multiplier (SiPM) Arrays convert light into electrical signals.



6mm Hamamatsu SiPM

Mission Performance-Effective Area

Effective area is 70% that of the larger GBM NaI detectors at 100 keV and 15 degree incidence

See: Jeremy S. Perkins et al. http://dx.doi.org/10.1117/12.2562796

Calibrations

- Calibration Campaigns:
 - Flight spare
 - Instrument
 - Observatory
- Instrument Properties:
 - Channel-energy relationship
 - Energy and angular dependent detector response
 - Effective area
 - Energy range and resolution

