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Historic Science Goals @ @esa

* Massive Black-Hole Binaries (MBHBs, 10> — 108 M) as tracers of
galaxy-BH coevolution throughout cosmic history (i.e. toz = 20 or

beyond)

* Extreme Mass Ratio Inspirals (EMRIs, an MBH and a stellar-mass
compact object) as GR laboratories and probes of galactic nuclei

 Galactic binaries (millions of unresolvable double white dwarfs,
0(10%) resolvable WDWDs, some (?) resolvable NS and BH binaries)

* Primordial stochastic background
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Evolution of Science Goals @ @esa

* MBHBs (at 1 = z < 20) and EMRIs (at z < 1) can probe cosmology when
combined with EM observations
 “standard sirens”: GW measures D, EM measures z

* MBHBs likely not in vacuum, so EM a go

* Improved evidence for intermediate mass BHs (IMBHs, 102 — 10* M),
motivates case for IMBHBs and IMRIs

* Relatively high LIGO BHB event rate and large masses implies LISA will
observe some LIGO binaries ~10 years before merger — “multiband GW
astronomy”

 Pulsar timingarrays set more stringent limits on non-exotic primordial
stochastic backgrounds with LISA instrumental and foreground limits
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2037 Landscape @ Cesa

* Some science has been/will be scooped by others
* E.g. the “discover gravitational waves first” ship has sailed...

* First galaxies probed by CHIME and others (21-cm cosmology)

* Early galaxy evolution observed by JWST

* Silver lining — nothing else can probe on the scale of the MBHB at z = 10, so BH-
galaxy coevolution best done with (non-contemporaneous) LISA+JWST

» Expansion history/distance scale will be measured to better than 1% with
WEFIRST
* GW+EM have different systematics, could become competitive in large N limit

* MBHs observed at large z with Athena, LSST, SKA



LISA Sensitivity e\/‘/" isa

. jsr.enzitivity curve determines event rate, and science when other variables are @ @ cSa
ixed.

* Low frequency sensitivity set by acceleration noise, high set by optical path
noises (shot and ”other’x and response.

* Galactic confusion foreground near the “bottom of the bucket” becomes better
resolved with longer mission lifetimes.
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Galactic Binary Sensitivity \/'/’ isa
@ esa

* Number of known WDWD “verification binaries”, O(10%) more will be resolved.

* Nontrivial signals (e.g. resonances), EM counterparts (e.g. tidal heating) make
these more interesting than in the past.
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EMRI and SOBHB Sensitivity g
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* Very sensitive to depth of bucket, 0 event rate possible @@ cSa
* EMRIs have very complicated, rich dynamics (e.g. e SOBHBs can be localized by LISA years before
resonances) merger

* Great for carrying info, brutal for modeling * Merger viewed from the ground by Voyager/Einstein

* Can probe nuclear stellar and gas distribution Telescope

* Can test GR iff we can model them well enough

(Sesana 201 6) (Amaro-Seoane & Santamaria 2010)
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How will LISA measure parameters? <o -
@ esa

* SNR is only one of the considerations
* Intrinsic parameter dependence of waveforms (for MBHBs, q, S;, S,, €)

* Independent waveform channels, with different frequency and spatial dependencies
(aka TDI observables)

* Annual doppler modulation

* Frequency dependence of response function @~ | s :

v
'/ : relative orbits
Vr’ ! of spacecraft
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LISA Pathfinder

Acceleration noise suppression far exceeded
LPF goals, validate performance at LISA levels

LISA requirements LISA Pathfinder
requirements
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Only local interferometry, but at
femtometer level
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GRACE-FO
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Outlook / is2
@@esa

* Mission currently in design stage (ESA Phase A)

* Mission “Adoption” in 2023-2034
* Final design / cost / schedule
* Finalize roles and responsibilities

* Mission launch in mid- to late-2030s
* Science begins launch + 2 years
* 4 years baseline, 10 years total

~2023 ~2037
Formulation Mission Implementation Launch Operat!ons Extended Mi;sion
Adoption (~10 years) (18 mo cruise, 1 yr (up to 6 yrs science)

commissioning, 4 yrs science)
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