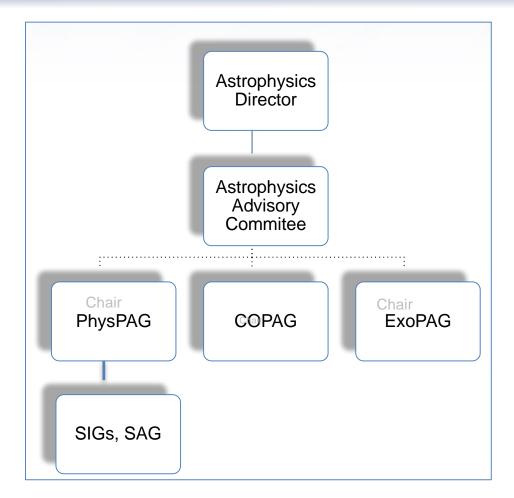
Overview of the MMA SAG

Multimessenger Astrophysics Science Analysis Group https://pcos.gsfc.nasa.gov/sags/mmasag.php

John Tomsick

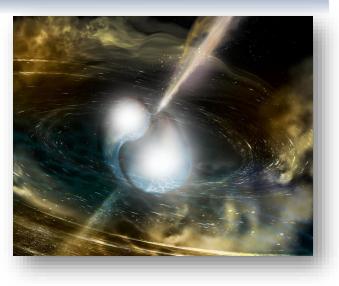
UC Berkeley/Space Sciences Lab


MMA SAG co-chair

HEAD Meeting – Tuesday, March 19, 2019

What is a Science Analysis Group (SAG)?

- Science Analysis Groups conduct specific analyses
 - Start and end dates
 - Report delivered at the end
- Science Interest Groups (SIGs) are for community discussion
 - X-ray SIG was at lunch today
 - GammaSIG is at lunch tomorrow


Lines of communication from the community to NASA leadership

What is the MMA SAG?

- Charge is to analyze the potential scientific benefits of multimessenger observations made possible by NASA observatories working with each other and with other ground and space-based instruments
- Multimessenger currently includes photons, GWs, neutrinos, and cosmic rays
- Leadership
 - Chair, John W. Conklin, University of Florida
 - Co-chair, Suvi Gezari, Univ. of Maryland (from Cosmic Origins Program Analysis Group, COPAG)
 - Co-chair, John Tomsick, UC Berkeley (from PhysPAG)

Goals of the MMA SAG

- 1. Identify **science** achievable by combining different messengers
- 2. Identify **measurements** that can be made by existing, currently approved, and planned ground or space-based observatories in the 2020s or early 2030s

- Determine how these enhanced or new science goals align with NASA Astrophysics Division's scientific priorities
- 4. Identify the key **technical drivers** that are needed to achieve these science goals (e.g., wavelength, sensitivity, sky localization, latency, ...)

MMA SAG Source Teams

- Organized around astrophysical sources (not wavelength)
 - Goal: form teams with people interested in the same sources but observing via different messengers
- Source Teams
 - 1. AGN, SMBH binaries, EMRIs
 - Sarah Burke-Spolaor & Bindu Rani, co-leads
 - 2. NS+NS, NS+BH, WD-WD binaries, GRBs
 - Eric Burns, Colleen Wilson-Hodge, co-leads
 - 3. Stellar mass BH-BH binaries
 - Peter Shawhan, Saavik Ford, co-leads
 - 4. FRBs, SNe Ia, SN remnants
 - Geoff Clayton, lead

Approach to Preparing the Report

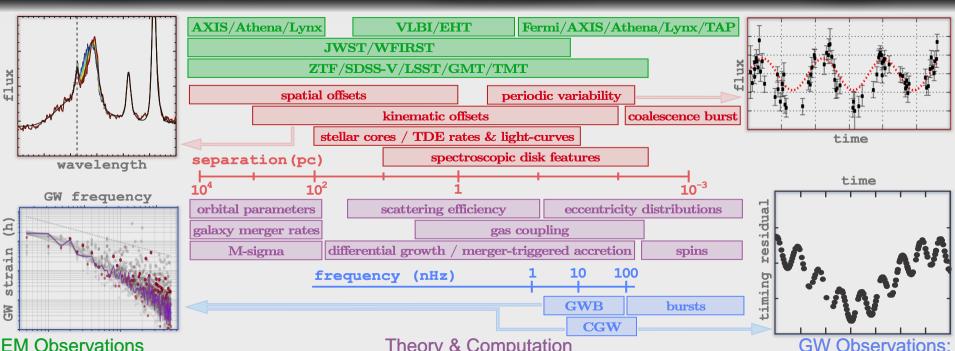
- We organized the astrophysics community to prepare Astro2020 science white papers
- Community volunteers organized around each source discussed and then prepared WPs
- These (in some form) will become part of the final report, or they will be referenced in the final report

Submitted Decadal White Papers (I)

Overview				
Authors	Title	Primary Topic		
Eric Burns +24 co-authors	Opportunities for Multimessenger Astronomy in the 2020s	Intended to give the broader perspective		
Team 1: AGN, SMBH binaries, EMRIs				
Authors	Title	Primary Topic		
Bindu Rani +M. Petropoulou, H. Zhang, F. D'Ammando, J. Finke+18 co-authors	Multi-Physics of AGN Jets in the Multi-Messenger Era	AGN		
Marcos Santander +S. Buson, K. Fang, A. Keivani, T. Maccarone, K. Murase, M. Petropoulou, I. Taboada, N. Whitehorn +many endorsers	A Unique Messenger to Probe AGN: High-Energy Neutrinos	AGN		
Luke Kelley & Maria Charisi+28 co-authors	Multi-Messenger Astrophysics with Pulsar Timing Arrays	SMBH binaries		

Submitted Decadal White Papers (II)

Team 2: NS+NS, NS+BH, Galactic binaries, CCSNe				
Authors	Title	Primary Topic		
Eric Burns +19 co-authors	A Summary of Multimessenger Science with Neutron Star Mergers	NS+NS		
Thomas Kupfer +5 co-authors	A Summary of Multimessenger Science with Galactic Binaries	Galactic binaries (continuous GW sources)		
Chris Fryer +7 co-authors	Core Collapse Supernovae and Multimessenger Astronomy	CCSNe		


All covered in the following presentations

Submitted Decadal White Papers (III)

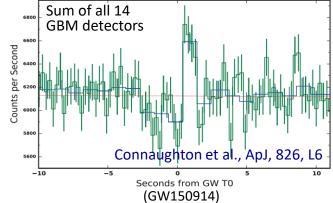
Team 3: Stellar mass BH+BH binaries				
Authors	Title	Primary Topic		
Peter Shawhan +7 co-authors +5 endorsers	Multimessenger Astrophysics Opportunities with Stellar Mass Binary Black Hole Mergers	sBBH		
K.E. Saavik Ford +17 co-authors +10 endorsers	AGN (and other) astrophysics with Gravitational Wave Events	sBBHs may probe gas disks around AGN		

Team 4: FRBs, SNe Ia, SN remnants				
Authors	Title	Primary Topic		
Mike Zingale +7 co-authors	Thermonuclear Supernovae	SNe Ia and SNRs		

Multi-Messenger Astrophysics With Pulsar Timing Arrays Luke Zoltan Kelley (LZKelley@northwestern.edu), Maria Charisi (MCharisi@caltech.edu), Joseph Simon, Sarah Burke-Spolaor, NANOGrav collaboration, et al.

EM Observations variability studies & EM-candidate followup

Theory & Computation emission & dynamical interactions


- Binary AGN
- emission & variability
 Circumbinary disk sims w/ radiation & feedback
- Coupling simulations from cosmological to disk scales

GW Observations: continued timing & new pulsars

- ${\boldsymbol{\cdot}}$ Radio: 100s MHz GHz
- Effective diameters $\gtrsim 100 \mathrm{m}$
- Time: $\sim 1000 \mathrm{s \ hr/yr}$

The Potential of sBBH Mergers for MMA

- Recall that Fermi-GBM recorded a weak transient signal <1 second after GW150914
 - Intriguing but inconclusive
- Unclear if stellar-mass BBH mergers are MMA sources – but there are models!
 - Accretion of material from the surroundings of the BBH, producing a jet → GRB
 - Circumbinary disk of outflow material from BH progenitor star
 - Leftover stellar material from recently triggered formation of second BH
 - Mass transfer from a star in a hierarchical triple with the BBH
 - Material from an AGN's accretion disk, in which the sBBH may be embedded
 - Also more speculative models
 - Black holes with non-negligible charge inherited from progenitor neutron stars
 - Magnetic or exotic field interactions
 - Stellar evolution and compact binary formation
 - Placing sBBH system in a particular galaxy tells about age and formation conditions
 - Timing, spectrum, strength of EM emissions tell about source of mass for accretion
 - Cosmological measurements
 - Tests of GR and fundamental physics

11

A cartoon AGN

- AGN have embedded stars & sBH
- Gas accelerates mergers
- LIGO rates already constrain H/r, AGN lifetime
- Statistical correlations can further constrain AGN disks
- See Ford, Bartos, McKernan++ white paper

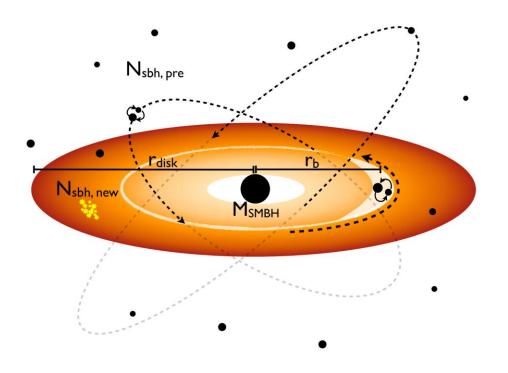
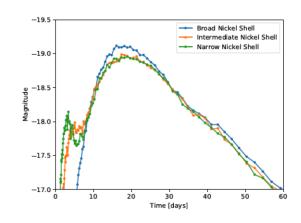
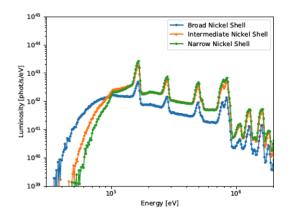


Image credit: Matthew O'Dowd


Thermonuclear Supernovae


M. Zingale, C. L. Fryer, A. Hungerford, S. Safi-Harb, R. Trappitsch, R. Fisher, A. Calder, K. J. Shen

- Type la supernovae are important for:
 - Nucleosynthesis
 - Cosmological distance indicators
- Explosion mechanism / progenitor not known
 - Single massive WD in binary?
 - Chandra explosion model?
 - Double WD system?
 - collisions / mergers?
 - double detonations?

- Light curves + spectra in IR to UV
 - Illuminate early rise: can probe shock interactions
 - Early spectra allow detailed comparison to models
- Gamma-rays
 - Directly emitted from decay of ⁵⁶Ni
 - Different progenitors predict different ⁵⁶Ni distributions
- Gravitational waves
 - Probably only important for mergers
 - Detection can rule out single degenerates?

- Computational modeling and multi-messenger observations go hand-in-hand
 - Investments needed in both observational capability and software support and development

Path Forward on the Report

- There are a couple topics on our original list that did not get covered in the WPs
 - Extreme Mass Ratio Inspirals (EMRIs)...definitely need to be included
 - Fast Radio Bursts (FRBs)...very interesting, but are these radio only?
- The WPs all have recommendations, but these need to be discussed by the MMA SAG and a comprehensive summary needs to be written
- We plan to submit the report to the Astrophysics Advisory Committee (APAC) in mid-2019