U.S.NAVAL RESEARCH LABORATORY

Glowbug: a gamma-ray telescope for bursts and other transients

J.E. Grove, M. Kerr, C.C. Cheung, L.J. Mitchell, B.F. Phlips, E.A. Wulf (Naval Research Lab),

M.S. Briggs (University of Alabama Huntsville),

- C.A. Wilson-Hodge, D. Kocevski (NASA Marshall Space Flight Center),
- J. Perkins (NASA Goddard Space Flight Center)
- S. Guieriec (George Washington University)
- D.H. Hartmann (Clemson University)

March 2019

J. Eric Grove, U.S. Naval Research Laboratory

This work is supported by the NASA Astrophysics Research and Analysis Program

Glowbug: all-sky 30 keV – 2 MeV band transient monitor **Glowbug:** all-sky 30 keV – 2 MeV band transient monitor **Optimized for GRBs**

Glowbug instrument

Tech demonstrator (half-scale) for GAMERA SmallSat mission concept

- Large scintillator array
 - CsI(TI) + SiPM readout
 - Good stopping power; not hygroscopic
 - Low size, weight, and power readout
 - Front end and DAQ from NRL's SIRI-2
 - Low power, space qualified
- Selected by NASA APRA
 - Funding began March 2019
- Launch via DoD Space Test Program (STP)
 - Proposed for STP-H9 to International Space Station (ISS) in early 2023
 - STP provides integration, launch, and 1 year operations costs

Glowbug detectors

Goal: obtain the best-possible sensitivity (maximal detector area, minimal background) and degree-scale localization as tech demonstrator for SmallSat mission concept

Design concept: large-area array of SiPM-read CsI(TI) scintillators

Can be built today with components at TRL 6 or higher

Cesium iodide CsI(TI): better stopping power and photopeak efficiency than NaI, and is minimally hygroscopic, which eliminates need for hermetic enclosures

 Heritage through NRL's Strontium Iodide Radiation Instrumentation (SIRI) program

Aside: SIRI-1 space-qualifies SiPMs, Srl₂

Strontium Iodide Radiation Instrumentation

- Purpose: Space-qualify high-resolution scintillator SrI2 (<3% at 662 keV), SensL SiPMs, with BeagleBone Black Single-Board Computer (SBC)
- SIRI-1 launched 3 December 2018 on STPSat-5
- SensL J-series SiPMs are operating today on orbit
 - Performance same as on ground. No issues

Gamma-ray count rate (E > 30 keV) in SIRI-1 in southern hemisphere during Feb 2019.

Instrument paper: Mitchell et al. 2017 Proc. of SPIE Vol. 10397, 103970B

5

Glowbug data acquisition

Front end and data acquisition system

- Replicates existing SIRI-2 design
 - Average power 23 W
 - GPS-derived time stamps (<1 us)

Concept of operations

- Rate mode, formed from event list stream
- Autonomous burst detection, switching to event list downlink in ~100 sec pre and post window
- Burst Alert message
- Note: if ISS, entire ~3 GB/day event list dataset will be downlinked

SIRI-2 flight DAQ and sensor head

Bench test performance demo

Detector performance

- Used SIRI-2 flight unit to shape, digitize largest Glowbug detector
 - CsI(Tl) crystal 15x15x1 cm
 - SiPM array

Instrument sensitivity

Performance estimated from detailed Monte Carlo simulations of scintillator modules, instrument geometry model, and maximum likelihood analyses performed using realistic GBM background

Glowbug summary

Postdoc opportunities available Email me: eric.grove@nrl.navy.mil

