Gamma-Ray Probes of Supernovae Chris Fryer

Gamma-Rays and SN 1987A

- Early gammarays require the ⁵⁶Ni to be mixed out.
- Mixing was insufficient unless the explosion itself was asymmetric.
- This led theorists to the current convective paradigm behind core-collapse supernovae.

Redshifted lines in SN 1987a argued for an explosion that was stronger along one axis. Low mode convection! More of these observations are essential!

Hungerford et al. 2004

NuSTAR and Cassiopeia A

Grefenstette et al. 2017

²⁶Al and ⁶⁰Fe are produced in stellar burning layers and destroyed/produced in the SN explosion: probes of the progenitor, the explosion and nuclear rates.

- Most observations measure diffuse emission.
- Can we observe an old remnant?

A nearby kilonova remnant would truly probe heavy element production

Type Ia supernovae: again, gamma-rays probe the engine.

- Gamma-ray observations of SN2014J showed that ⁵⁶Ni could be mixed at different levels than we previously assumed.
- This distribution can alter the lightcurves.

• Gamma-rays are ideal probes of this distribution.

Gamma-rays are excellent probes of Supernovae

- Observations of SN87A and the Cas A supernova remnant were key observations behind the current supernova paradigm
- ²⁶AI and ⁶⁰Fe probe stellar burning layers, nuclear physics and, to a lesser extent, the supernova engine
- If we are lucky, gamma-rays can probe yields in kilonova remnants?
- Gamma-rays are important for SN Ia as well.