Off-Plane Grating Developments

Randy McEntaffer – University of Iowa, OP-XGS PI

University of Iowa

- Ted Schultz
- Ryan Allured
- Brennan Gantner
- Casey DeRoo, et al

Open University, UK

- Neil Murray
- James Tutt
- Andrew Holland, et al

Goddard Space Flight Center

- Will Zhang
- Ryan McClelland
- Kai-Wing Chan, et al

Marshall Space Flight Center

- Steve O'Dell
- Jessica Gaskin
- Jeff Kolodziejczak, et al

University of Colorado

- Webster Cash
- Thomas Rogers
- Ann Shipley, et al

Industry partners

- LightSmyth Technologies
- Nanonex Corp.
- XCAM/e2v
- NGAS

See McEntaffer, et al., 2013, Exp. Astro, in press (arxiv:1301.5531)

Importance of grating spectroscopy

IXO X-ray Science

(as accomplished by missions in the X-ray Study)

Science	IXO	AXSIO	N-CAL	NXGS	NWFI	Legend:
Strong	orbiting					IXO Science Goal is
Gravity	Fe Κα					Fulfilled
SMBH	spin					Partially fulfilled
Growth	survey					Not fulfilled
Evolution of LSS	WHIM					Not Applicable
	cluster					Missing bonyone
	survey					 INISSING baryons
Feedback	cluster					Galactic feedback
High density matter	imaging					Stallar coronao
	NS					• Stellar Coronae
	spectra					Charge exchange
	timing					 Supernova remnants

Off-Plane X-ray Grating Spectrometer (OP-XGS)

Off-plane geometry and technical challenges

 $\sin\alpha + \sin\beta = n\lambda/d\sin\gamma$

- 1. Radial profile to control aberration
- 2. Blazed profile to increase S/N in plus *or* minus orders
- Alignment to ensure spectral overlap

A new grating fabrication technique

- e-beam lithograph a mask (high density radial pattern)
- Reduction DUV immersion photolith into Si
- Results in a "Pre-master" (left)
- Etch to get a blaze (below)
- Replicate(?)

1. Spin coat resist onto nitride coated Si wafer

2. Nanoimprint pre-master into resist

3. Reactive ion etch residual resist and nitride

4. Rinse resist with acetone

5. Wet etch Si with KOH

6. Nitride tab removal with HF

Diffraction Efficiency

- Measure at BESSY PTB
- Allows 2-D sampling of focal plane

BESSY PTB's EUV Reflectometer

<u>Samples</u>: - up to 50 kg in weight - up to 550 mm in diameter

Axis	Range			
Θ	-30° to 95°			
Tilt	-10° to 10°			
Φ	0° to 360°			
X	-90 mm to 90 mm			
Υ	-10 mm to 300 mm			
Z	-15 mm to 140 mm			
Det. X	0 mm to 120 mm			
Det. R	150 mm to 550 mm			
Det. Ψ	0 ° to 180 °			
2 0	-5° to 190°			

Accuracy: 10 μm or 0.01 $^\circ$

Diameter: 2 m Length: 2.1 m Weight: 3 t

Efficiency Results

- α = 0; higher orders at lower energies in evanescence
- Low duty cycle causes groove well/top interference
- Blaze should 1) remove latter, 2) take power from 0 order, 3) provide flatter efficiency response over energy – all shown theoretically/empirically

Spectral Resolving Power Tests at MSFC

a) Installation

b) GSFC Optics TDM

a) Optics + Gratings

a) CCD + stages

Resolution results

- Mg-Kα fluorescence line @ 0.925 keV
- Detected at ±1st, ±2nd, and ±3rd orders
- Resolution ≈ 900, 1300, 1300, respectively

Focal dependence on source flux

Zero order focus results: Black diamonds - focus run on Day 1 with Manson electron beam current at 0.16 mA; Red crosses - focus run on Day 2 with Manson beam current at 0.5 mA; Cyan asterisks - focus run on Day 3 with Manson beam current at 0.16 mA; Green and Blue diamonds - focus checks on Day 4 with Manson beam at 0.5 mA and 0.16 mA, respectively; Orange diamonds - focus check on Day 5 with Manson beam at 0.16 mA.

Grating alignment and module design

Allured & McEntaffer, 2013, in prep

Grating alignment and module design

Grating Module Rev 2

Accomplishments and plans

- Radial, high density grating fabricated
- Measured high efficiency over relevant energies
- Measured high spectral resolving power matching theoretical expectations at first order
- Higher order resolving power limited by facility issues
- Alignment metrology and methodology consistent with achieving tolerance requirements

- Blaze grating (recently ~successful)
- Measure high efficiency on blazed gratings
- Measure high spectral resolving power on blazed gratings
- Limit source size or increase beam length
- Design, fabricate, and test aligned modules of blazed gratings (a new SAT... hopefully)

NASA - APRA

- 5-year suborbital rocket program
- Off-plane Grating Rocket Experiment (OGRE)
- Increase flight readiness of gratings as well as optics and CCDs...
 - Optics supplied by Goddard Space Flight Center
 - Gratings ,+++ at Iowa
 - CCD camera supplied by Open University + e2v Technologies

OGRE performance

April 12th, 2013 HEAD PCOS X-ray SAG Meeting - Monterey

Payload

Launch 2017!

Summary

- Grating spectrometers are critical to future X-ray science goals
- Off-plane gratings provide a method for obtaining high throughput and spectral resolving power
- A new fabrication method has been identified.
 - Initial steps have been taken to produce a high density, radially ruled groove profile
 - Initial performance results are consistent with requirements
 - Blazing processes are understood and underway
 - Alignment tolerances are identified
 - Alignment methodologies and module mounts have been implemented with a development plan in place
- Technology development programs have accelerated grating studies and provided a well defined path until a mission is identified

Acknowledgements

- NASA Strategic Astrophysics Technology grant (SAT)
 - NNX12AF23G, ...?
- NASA Nancy Grace Roman Technology Fellowship (RTF)
 - NNX12AI16G, ...?
- NASA Astronomy and Physics Research and Analysis (APRA)
 - NNX13AD03G
- Thank you for your attention!

Back-up slides

