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Sub-orbital synergies

Ground-based CMB experiments:
4 long survey durations reach high sensitivity
4 access to very small scale CMB fluctuations

4 no large angular scale fluctuations (¢ < 30 ) or high frequencies (v > 280 GHz) due to atmospheric
emission

Balloon-borne CMB experiments:
4 shorter duration survey
4 access to large angular scale CMB fluctuations

4 access to high frequencies as they are not as impacted by the atmosphere
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Constraining PGW with CMB-54

CMB-S4 PGW Science Goal:
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Foregrounds and the component separation challenge
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S o ® Primary polarized foregrounds: Dust and synchrotron
Component separation is vital for achieving

PGW detection target. e Foreground modelling uncertainty in how frequency scaling
changes across sky and decorrelation.
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Balloon-borne mission: imager vs spectrometer

Realistic configurations for Imager:

e Two types of pixels: low frequency pixels (2316 pixels), frequencies -
150, 180,250,320 GHz and high frequency pixels (1680 pixels),
frequencies - 220, 280,360 GHz.

® Resolution: 7.2 arcmin at 150 GHz and 3.2 arcmin at 360 GHz.

o Total 20562 TES bolometers.

Realistic configurations for Spectrometer:

Single spectrometric pixel with 33 arcmin resolution.

Two beams (one each for Q and U polarization).

FTS has dichroic split to high and low frequency detector.

Low frequency module: 7 frequencies |150-400 GHz with 50 GHz
bandwidth each

e High frequency module: 9 frequencies 400-800 GHz with 50 GHz
bandwidth each
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Component separation and r forecasting
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4 5S4 noise model, delensing level
based on Belkner et. al. 2024 ApJ.
4 Foregrounds: medium and high

complexity from PySM.
4 Balloon noise model constructed

from patch visibility only, for 30 day
observation. (preliminary)
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Component separation

Realistic S4 patch visibility for a
balloon flight from Antartica
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Recovered spectra, uncertainties and residuals

{ Il S4-only  Medium complexity | Il S4-only High complexity
BN S4+Imag. foregrounds 3 B S4+Imag. for'egrounds

— 10_3 4 . S4+Spec. Ajens = 0.07 ~ 107 7 - S4+SpeC. Ajens = 0.07
(\l¥ : ens . ¥ :
=i 3
= £
T B
N o
%tz 104 A %\N 104 1 Fg. residual
,Li Fg. residual Si '
— —
+ +
=2 =
< <

1075 - r=0.001 10-5 - r=0.001

4x10"  6x10" 102 2x102  3x10? 4x10" 6x107 102 2x102 3x102
Multipole £ Multipole £




Forecast for PGW

Foreground residual after component separation:

e Adding observations from a balloon-based spectrometer can reduce residual foreground level by 35%
for medium complexity and 45% for high complexity foregrounds.

Uncertainty:
® The spectrometer option achieves a significant reduction in o(r).
e Reduction in o(r) varies 4% to |16% for medium complexity.

e For high complexity foregrounds o(r) reduces by 4% to 20%.




Summary

e Balloon-based CMB observations complement ground-based CMB experiment with access to large
angular scale fluctuations and higher frequencies.

®  We are studying how balloon-based measurements can help foreground cleaning for CMB-54 in context
of detection of PGW.

® Increasing foreground complexity gives increased foreground residual and uncertainty after component

separation stage.

®  We find significant improvement in foreground residual when adding high frequency observations from
the balloon-based spectrometer.

® We also find reduction of uncertainty o(r) with both instruments.The spectrometer option

outperforms the imager.
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PGW detection forecast

CMB-S4 only CMB-S4 + Imager CMB-S4 + Spectrometer
4 | equiv. rbias’ 4 | equiv. rbias’ 4 | equiv. rbias’
o(r) x 10 « 10 o(n) x 10 « 10 o(r) x 10 < 10
Medium 5.6 8.7 5.4 8.7 4.6 5.6
complexity
High 7.2 6 6.9 15 5.5 8.7
complexity

*Equivalent r bias: Equivalent value of r for the ILC residual foreground power spectrum.



