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Sub-orbital synergies 

Ground-based CMB experiments: 

✦ long survey durations reach high sensitivity 

✦ access to very small scale CMB fluctuations 

✦ no large angular scale fluctuations (          ) or high frequencies (𝜈 > 280 GHz) due to atmospheric 
emission

Balloon-borne CMB experiments: 

✦ shorter duration survey 

✦ access to large angular scale CMB fluctuations 

✦ access to high frequencies as they are not as impacted by the atmosphere
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Large-scale E-modes with balloon 

● TauSurveyor concept: Balloon-borne CMB experiment 
can measure large-angular scale E-mode polarization

● Can constrain the optical depth to reionization (𝛕)

Achieving 𝜎(𝜏) < 0.003 from realistic 
sub-orbital experiments, for realistic sky
is very challenging!

(Errard, J. et. al. ApJ 940:68 2022)

Access to the 
largest scales

TauSurveyor forecast: 𝜎(𝜏) = 0.0034

What can balloons do in CMB 
B-mode polarization? 3



Constraining PGW with CMB-S4
CMB-S4 PGW Science Goal:

If r ≥ 0.003, achieve a 5σ detection. 

If r = 0, achieve a 95% confidence upper limit of r ≤ 0.001.            

Target σ(r) = 5x10-4 achieved after approx. 10 years of survey

CMB-S4-like South Pole 
Deep Patch
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Foregrounds and the component separation challenge
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Component separation is vital for achieving 
PGW detection target.

● Primary polarized foregrounds: Dust and synchrotron

● Foreground modelling uncertainty in how frequency scaling 
changes across sky and decorrelation.

● PySM models: Low, Medium and High complexity



Balloon-borne mission: imager vs spectrometer
Realistic configurations for Imager:

● Two types of pixels: low frequency pixels (2316 pixels), frequencies - 
150, 180, 250, 320 GHz and high frequency pixels (1680 pixels), 
frequencies - 220, 280, 360 GHz.

● Resolution: 7.2 arcmin at 150 GHz and 3.2 arcmin at 360 GHz.
● Total 20562 TES bolometers.  

Realistic configurations for Spectrometer:

● Single spectrometric pixel with 33 arcmin resolution.
● Two beams (one each for Q and U polarization).
● FTS has dichroic split to high and low frequency detector.
● Low frequency module: 7 frequencies 150-400 GHz with 50 GHz 

bandwidth each
● High frequency module: 9 frequencies 400-800 GHz with 50 GHz 

bandwidth each

Imager focal 
plane

Fourier 
Transform 
Spectrometer 6



Component separation and r forecasting
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Simulation
Component separation Forecasting

Realistic S4 patch visibility for a 
balloon flight from Antartica✦ S4 noise model, delensing level 

based on Belkner et. al. 2024 ApJ.
✦ Foregrounds: medium and high 
complexity from PySM.
✦ Balloon noise model constructed 
from patch visibility only, for 30 day 
observation. (preliminary)

✦ Bias on r is estimated by fitting the 
foreground residuals. 
✦ The uncertainty estimates come from 
a Fisher estimate assuming a Gaussian 
likelihood:
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Recovered spectra, uncertainties and residuals

Medium complexity 
foregrounds

High complexity 
foregrounds

PRELIMINARY! PRELIMINARY!
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Forecast for PGW

Foreground residual after component separation:

● Adding observations from a balloon-based spectrometer can reduce residual foreground level by 35% 
for medium complexity and 45% for high complexity foregrounds. 

Uncertainty:

● The spectrometer option achieves a significant reduction in 𝜎(r).

● Reduction in 𝜎(r) varies 4% to 16% for medium complexity. 

● For high complexity foregrounds 𝜎(r) reduces by 4% to 20%.
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Summary
● Balloon-based CMB observations complement ground-based CMB experiment with access to large 

angular scale fluctuations and higher frequencies.

● We are studying how balloon-based measurements can help foreground cleaning for CMB-S4 in context 
of detection of PGW.

● Increasing foreground complexity gives increased foreground residual and uncertainty after component 
separation stage.

● We find significant improvement in foreground residual when adding high frequency observations from 
the balloon-based spectrometer.

● We also find reduction of uncertainty 𝜎(r) with both instruments. The spectrometer option 
outperforms the imager.
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Backup slides
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Noise comparison
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Imager Spectrometer



Dust sensitivity
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Imager Spectrometer



PGW detection forecast

CMB-S4 only CMB-S4 + Imager CMB-S4 + Spectrometer

𝜎(r) x 10-4 equiv. r bias* 
x 10-4 𝜎(r) x 10-4 equiv. r bias* 

x 10-4 𝜎(r) x 10-4 equiv. r bias* 
x 10-4

Medium 
complexity 5.6 8.7 5.4 8.7 4.6 5.6

High
complexity 7.2 16 6.9 15 5.5 8.7
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*Equivalent r bias: Equivalent value of r for the ILC residual foreground power spectrum. 

PRELIMINARY!


