Constraints on Axion-Like Particles from a Hard X-ray Observation of Betelgeuse

Mengjiao Xiao, MIT APS April Meeting (online) 2021-04-19

Based on the work: M. Xiao, K. Perez, M. Giannotti, O. Straniero, A. Mirizzi, B. Grefenstette, B. Roach, M. Nynka. *Phys. Rev. Letts* 126, 031101 (2021)

Axions & Axion-Like Particles

Axion-like particles (ALPs): predicted by many extensions of the Standard Model (e.g. string theory)

May solve the dark matter problem for free.

Searches for Axion/ALPs

□ May weakly couple to many particles in SM (gluons/quarks, and photons)

ALP-photon coupling promising (naturally) for detection

Significant unexplored parameter space, experimental efforts growing fast!

C. O'Hare. Github

ALP Telescope Principle

Mengjiao Xiao (MIT), APS-April Meeting (2021)

Betelgeuse as ALP Factory

Alpha Orionis (Betelgeuse): red supergiant in the constellation of Orion.

E. Levesque & P. Massey (2020)

G. Perrin et al. (2004),

General Well studied:

- $\log L/L_{\odot} = 5.10 \pm 0.22$ *T. Le Bertre et al. (2012)*
- T_{eff} = 3641 \pm 53 K
- M ~ 20 M . Dolan et al, Astro- phys. J. 819, 7 (2016)
- □ Advanced stage
- □ Near (200 pc) G. Harper et al. (2008) (2017)

- □ No solar-like corona that could emit X-rays J. Posson-Brown et al. arXiv:astro-ph/0606387
- □ There are no bright sources within 5°, ensuring no significant stray light contamination
- □ Other observations (Chandra, soft X-rays) exist

J. Posson-Brown et al. arXiv:astro-ph/0606387

Betelgeuse: ALP-photon Production

ALP production rate:		Phase	$t_{\rm cc} [{\rm yr}]$	$\log_{10}(L_{\rm eff}/L_{\odot})$	$\log_{10}(T_{\rm eff}/{\rm K})$
		He burning	155000	4.90	3.572
		before C burning	23000	5.06	3.552
	2	before C burning	13000	5.06	3.552
1 ni = 1 064 C - 2 D (R+1)	F 3	before C burning	10000	5.09	3.549
$aN_a = 10^{\circ} L g_{av} = E_{ev} = \frac{(p+1)}{\pi}$	4	before C burning	6900	5.12	3.546
$\underline{ } = \underline{ } \cdot (\underline{ })^{p} \cdot e E_{0}$	5	in C burning	3700	5.14	3.544
$dE keV s (E_0)$	6	in C burning	730	5.16	3.542
	7	in C burning	480	5.16	3.542
	8	in C burning	110	5.16	3.542
	9	in C burning	34	5.16	3.542
Parameterized by stellar model		between C/Ne burning	7.2	5.16	3.542
	11	in Ne burning	3.6	5.16	3.542
		beginning of O burning	1.4	5.16	3.542
	12	beginning of O burning	1.4	5.16	3.542

 $ightarrow t_{cc}$: time until core collapse for Betelgeuse, modeled from 1.4 yr to 1.55×10⁵ yr

□ *ALP-photon conversion probability* :

$$P_{a\gamma} = 8.7 \times 10^{-6} \left(\frac{g_{a\gamma}}{10^{-11}}\right)^2 \left(\frac{B_T}{1\,\mu G}\right)^2 \left(\frac{d}{197\,pc}\right)^2 \frac{\sin^2 q}{q^2}$$
$$q = \left[77 \left(\frac{m_a}{10^{-10}\,eV}\right)^2 - 0.14 \left(\frac{n_e}{0.013\,cm^{-3}}\right)\right] \times \left(\frac{d}{197\,pc}\right) \left(\frac{E}{1\,keV}\right)^{-1}$$

 $> B_T$: Assuming homogeneous regular, 0.4~3.0 μG

R. Jansson et al. (2012) J. Xu et al. (2019) L. Harvey-Smith et al. (2011)

Betelgeuse: ALP-photon Production

 $\square Predicted ALP-photon Flux: \frac{dN_a}{dE} \times P_{a\gamma} \propto B_T^2 \cdot g_{a\gamma}^4$

NuSTAR Satellite Telescope

NuSTAR: NUclear Spectroscopic Telescope Array, launched in 2012.

Two identical telescopes, independent optic and focal-plane detector (FPMA/FPMB)

 \circ Each FOV 13'×13', with a half-power diameter of ~60" for a point source near the optical axis.

F.A. Harrison et al. ApJ, 770, 103 (2013)

Best existing instrument to detect the *hard X-rays* (3-79 keV) in space!

Betelgeuse Observation with NuSTAR

X-ray Spectrum Prediction

 $= \begin{array}{c} ALP \ Production \\ (d\dot{N_a}/dE) \end{array} \otimes \begin{array}{c} ALP - Photon \\ Conversion (P_a) \end{array}$

Expected event counts in NuSTAR for 13 stellar models of Betelgeuse

Instrument response
 files were extracted from
 source region (see later)

- $m_a = 10^{-11} eV$
- $B_T = 1.4 \ \mu G$
- $g_{a\gamma} = 1.5 \times 10^{-11} \ GeV^{-1}$

NuSTAR

Betelgeuse Observation with NuSTAR

□ First hard X-ray observations of Betelgeuse, using NuSTAR (~50 ks, taken on Aug. 23, 2019, ObsID 30501012002)

NASA Grant No. 80NSSC20K0031

□Source Region: r=60" around the star's equatorial coordinates (RA=88.79293[°], Dec.=7.40706[°])

Background Region:

- On the same detector chip as the source region (to properly describe spatially-varying backgrounds).
- Separated from source region center by at least 120" and at least 60" from one point source (Chandra source CXOJ055520:2+072002).

• FPMA image of NuSTAR observation regions in the energy range 3-79 keV

Data Analysis

Data were processed with the standard NuSTAR data reduction pipeline
Source spectrum: extracted from the source region with NUPRODUCTS

Instrument response files (ARF/RMF) were extracted simultaneously

Background (N_{bkg}): normalized the background spectrum to source region size

Data Analysis

Data were processed with the standard NuSTAR data reduction pipeline
Source spectrum: extracted from the source region with NUPRODUCTS

Instrument response files (ARF/RMF) were extracted simultaneously

□ Background (N_{bkg}): normalized the background spectrum to source region size

Photon Enorgy	FP	MA	FPMB		
i noton Energy	$N_{\rm obs}$	$N_{ m bkg}$	FPMB N_{obs} N_{1} 352 36 397 40	$N_{\rm bkg}$	
10-60 keV	313	315.8	352	362.7	
10-70 keV	354	359.8	397	406.4	
$10 - 79 \ \mathrm{keV}$	384	392.7	433	441.2	

No significant excess of events above the expected background was found!

Data Fitting

Profile likelihood analysis approach was performed to fit the data.

□For FPMA/FPMB, an unbinned likelihood function was constructed:

Constraints on the ALPs

A new competitive bound (95% C.L.) from the hard X-ray observation of Betelgeuse with NuSTAR, a factor of ~3x stronger than CAST at low mass.

- $0.4 \ \mu G \le B_T \le 3.0 \ \mu G$
- 1.4 $yr \le t_{cc} \le 1.55 \times 10^5 yr$
- $g_{a\gamma} < (0.5-1.8) \times 10^{-11} \ GeV^{-1}$ (depending on magnetic field and Betelgeuse stellar model) for ALP masses $m_a < (5.5-3.5) \times 10^{-11} \ eV$

*Similar study with other stellar objects: C. Dessert et al. (2020)

Constraints on the ALPs

Compare to other astrophysical constraints in the low-mass ALP regime.

Each constraint has unique sources of systematic errors.

The combination of various astrophysical constraints
 U
 Builds confidence in the robustness of the exclusion!

*Similar study with other stellar objects: C. Dessert et al. (2020)

More Discussion

Evolution of $g_{a\gamma}$ with the remaining time until the core-collapse (t_{cc}) for Betelgeuse.

□ Benefit: if future ALP experiments discover ALPs in the region our optimistic case excludes, we would set a lower limit on t_{cc} for Betelgeuse

Thank You!

Backup Slide: observation images

Mengjiao Xiao (MIT), APS-April Meeting (2021)

Backup Slide: observation data

Backup Slide: background regions

Mengjiao Xiao (MIT), APS-April Meeting (2021)

Backup Slide: more ALP-photon flux

Backup Slide: Data Analysis

Data were processed with the standard NuSTAR data reduction pipeline

- NuSTARDAS v1.8.1 distributed in HEASOFT v6.24
- Latest calibration package (CALDB.indx20191219)
- SAAMODE=OPTIMIZED and TENTACLE=YES

□ Source spectrum: extracted from the source region with NUPRODUCTS

 Instrument response files (ARF/RMF) were extracted simultaneously

□ Background (N_{bkg}): normalized the background spectrum to source region size

Photon Energy	FP	MA	FPMB		
	$N_{\rm obs}$	$N_{ m bkg}$	$N_{ m obs}$	$N_{\rm bkg}$	
$10-60~{\rm keV}$	313	315.8	352	362.7	
10-70 keV	354	359.8	397	406.4	
$10 - 79 \ \mathrm{keV}$	384	392.7	433	441.2	

No significant excess of events above the expected background was found!

Backup Slide: NuSTAR Satellite Telescope

Parameter	Value
Energy range	3–78.4 keV
Angular resolution (HPD)	58″
Angular resolution (FWHM)	18″
FoV (50% resp.) at 10 keV	10′
FoV (50% resp.) at 68 keV	6'
Sensitivity (6–10 keV) (10 ⁶ s, 3σ , $\Delta E/E = 0.5$)	$2 \times 10^{-15} \text{ erg cm}^{-2} \text{ s}^{-1}$
Sensitivity (10–30 keV) (10 ⁶ s, 3σ , $\Delta E/E = 0.5$)	$1 \times 10^{-14} \text{ erg cm}^{-2} \text{ s}^{-1}$
Background in HPD (10–30 keV)	$1.1 \times 10^{-3} \text{ counts s}^{-1}$
Background in HPD (30–60 keV)	$8.4 \times 10^{-4} \text{ counts s}^{-1}$
Energy resolution (FWHM)	400 eV at 10 keV, 900 eV at 68 keV
Strong source (>10 σ) positioning	$1''_{5}(1\sigma)$
Temporal resolution	$2\mu s$
Target of opportunity response	<24 hr
Slew rate	0.06 s^{-1}
Settling time	200 s (typ)

Focal Plane Parameter	Value	Focal Plane Parameter	Value
Pixel size	0.6 mm/12".3	Max. processing rate	$400 \text{ events s}^{-1} \text{ module}^{-1}$
Focal plane size	$12' \times 12'$	Max. flux meas. rate	10^4 counts s ⁻¹
Hybrid format	32 pix × 32 pix	Time resolution (relative)	2 µs
Energy threshold	2 keV	Dead time fraction (at threshold)	5%

Backup Slide: ALP-photon Production

ALP production rate:

$$\frac{d\dot{N_a}}{dE} = \frac{10^{64} C g_{a\gamma}^2}{keV s} \cdot (\frac{E}{E_0})^{\beta} \cdot e^{-\frac{(\beta+1)E}{E_0}}$$

ALP-photon conversion probability :

$$\begin{split} P_{a\gamma} &= 8.7 \times 10^{-6} (\frac{g_{a\gamma}}{10^{-11}})^2 \ (\frac{B_T}{1\,\mu G})^2 \ (\frac{d}{197\,pc})^2 \frac{\sin^2 q}{q^2} \\ q &= [77 \ (\frac{m_a}{10^{-10} \ eV})^2 - 0.14 (\frac{n_e}{0.013 \ cm^{-3}})] \times \ (\frac{d}{197 \ pc}) \ (\frac{E}{1 \ keV})^{-1} \end{split}$$

Parameterized by stellar model

(Assuming homogeneous regular B field)

Model	Phase	$t_{\rm cc} [{\rm yr}]$	$\log_{10}(L_{\rm eff}/L_{\odot})$	$\log_{10}(T_{\rm eff}/{ m K})$	C	$E_0 \; [\mathrm{keV}]$	eta
0	He burning	155000	4.90	3.572	1.36	50	1.95
1	before C burning	23000	5.06	3.552	4.0	80	2.0
2	before C burning	13000	5.06	3.552	5.2	99	2.0
3	before C burning	10000	5.09	3.549	5.7	110	2.0
4	before C burning	6900	5.12	3.546	6.5	120	2.0
5	in C burning	3700	5.14	3.544	7.9	130	2.0
6	in C burning	730	5.16	3.542	12	170	2.0
7	in C burning	480	5.16	3.542	13	180	2.0
8	in C burning	110	5.16	3.542	16	210	2.0
9	in C burning	34	5.16	3.542	21	240	2.0
10	between C/Ne burning	7.2	5.16	3.542	28	280	2.0
11	in Ne burning	3.6	5.16	3.542	26	320	1.8
12	beginning of O burning	1.4	5.16	3.542	27	370	1.8

t_{cc}: time until core collapse for Betelgeuse

Backup Slide: Betelgeuse-Chandra

- ObsID: 3365
- Energy range: 0.3-8 keV
- Exposure time: 4.899 ks