Forecasts on foreground removal and CMB B-mode recovery with PICO

Mathieu Remazeilles

Jodrell Bank Centre for Astrophysics University of Manchester

PICO Foregrounds Working Group:

Ragnhild Aurlien, Jacques Delabrouille, Hans-Kristian Eriksen, Kris Gorski, Shaul Hanany, Brandon Hensley, Reijo Keskitalo, Charles Lawrence, Clem Pryke, Mathieu Remazeilles, Graça Rocha, Ingunn Wehus, ...

> Inflation Probe Minisymposium American Physical Society April 18, 2021

Shaul Hanany

PICO in Brief

arXiv:1902.10541

- Millimeter/submillimeter-wave, polarimetric survey of the entire sky
- 21 bands between 20 GHz and 800 GHz
- 1.4 m aperture telescope
- Diffraction limited resolution: 38' to 1'
- 13,000 transition edge sensor bolometers
- 5 year survey from L2
- 0.87 uK*arcmin requirement; 0.61 uK*arcmin goal (=CBE)

https://z.umn.edu/cmbprobe

Mathieu Remazeilles

cmbprobe@lists.physics.umn.edu

PICO in brief

- $3 \times \text{more frequency bands than$ *Planck*for polarization channels
- Extends *Planck* frequency range by more than a factor of 2
- ✤ 5 frequency bands above *Planck* 353 GHz channel for dust polarization
- ✤ 60 × *Planck* sensitivity: 3300 *Planck* missions

PICO data challenge: public sky map simulations

https://zzz.physics.umn.edu/ipsig/20180424 dc maps

NERSC: /project/projectdirs/pico/data_xx.yy/

	💽 Register 🔒 Login	1		nu	nu_low	nu_high	del nu	FWHM	PolWeight
Probe Mission Study Wiki	Recent changes Media Manager Sitemag		Band#	(GHz)	(GHz)	(GHz)	(GHz)	(arcmin)	(uK*arcmin)
			1	21	18.2	23.4	5.2	38.4	16.9
You are here: CMB Probe Mission Study Wiki » 20180424_dc_maps			2	25	21.9	28.1	6.3	32.0	11.8
	20180424_dc_maps	1	3	30	26.3	33.8	7.5	28.3	8.1
Data Challenge Maps I		0	4	36.0	31.5	40.5	9.0	23.6	5.7
Apr 24 2018, Clem Pryke			5	43.2	37.8	48.6	10.8	22.2	5.8
For CMB-S4 project we have made simulations using a number of different foreground models plus lensed-LCDI described at \textcircled{D} Data challenge summary page and in \textcircled{D} a series of logbook postings.	CDM. noise and tensors. These are	9	6	51.8	45.4	58.3	13.0	18.4	4.1
		Ň	7	62.2	54.4	70.0	15.6	12.8	3.8
I have exploited this work for PICO to make equivalent sims.			8	74.6	65.3	84.0	18.7	10.7	2.9
Everything below is available on NERSC under /project/projectdirs/pico/			9	89.6	78.4	100.8	22.4	9.5	2.0
I first made SPySM input maps for the PICO band centers as listed in the v3.2 spreadsheet at imageroptions. I bandwidths to keep things simple. Everything is nside=512.	s. I did this for delta function		10	107.5	94.1	120.9	26.9	7.9	1.6
			11	129.0	112.9	145.1	32.3	7.4	1.6
Under sky_yy we have the sky models where yy designates the sky model number:			12	154.8	135.4	174.1	38.7	6.2	1.3
91=PySM a1d1f1s1			13	185.8	162.5	209.0	46.5	4.3	2.6
92=PySM a2d4f1s3			14	222.9	195.0	250.8	55.7	3.6	3.0
 93=PySM a2d/t1s3 96=Brandon's MHD model taken from /global/homes/b/bhenslev/mhd_maps/maps_v1 on 180424 			15	267.5	234.0	300.9	66.9	3.2	2.1
cmb = links to the cl's and alm's from which the LCDM component are generated (shared with Plank fighting)	10 sims)		16	321.0	280.9	361.1	80.3	2.6	2.9
Under expt_xx we just have single file 90/params.dat which specifies the instrument parameters for this round	l as taken from the v3.2 spreadsheet.		17	385.2	337.0	433.3	96.3	2.5	3.5
Under data_xx.yy we have the sets of simulated experimental maps. 90.00 contains the lensed-LCDM (Ilcdm), r	, noise (noise) and tensor (tenso)		18	462.2	404.4	520.0	115.6	2.1	7.4
components for each band. Noise levels are also as per the v3.2 spreadsheet. The signal components have b widths as per the v3.2 spreadsheet. There are also combined II CDM+noise+foreground+tensor mans (combi-	eam smoothing applied with beam		19	554.7	485.3	624.0	138.7	1.5	34.6
"comb" has full lensing signal. The "comb_AL" variants have the lensing signal artificially suppressed to the given levels of lensing power. S			20	665.6	582.4	748.8	166.4	1.3	143.7
comp_ALUp15 is the amount of lensing PIGO is supposed to have post de-lensing. "comb_ALUp1" and "con might be useful.	b_ALUpU3" are also provided and		21	798.7	698.9	898.5	199.7	1.1	896.4

PICO data challenge: public sky map simulations

https://zzz.physics.umn.edu/ipsig/20180424 dc maps

NERSC: /project/projectdirs/pico/data_xx.yy/

Model 91: Planck state-of-the-art PySM ald1s1

- dust: one modified blackbody with variable β , T
- synchrotron: power-law with variable β

Model 93: Hensley's PhD 2015 PySM a2d7s3

- dust: Hensley & Draine physical model
- synchrotron: power-law + curvature with variable β
- AME: 2% polarization

Model 92: Finkbeiner, Davis, Schlegel, ApJ 1999 PySM a2d4s3

- dust: two modified blackbodies with uniform β_1, β_2 and variable T_1, T_2
- synchrotron: power-law + curvature with variable β
- AME: 2% polarization

Model 96: MHD simulation

- dust & synchrotron derived from MHD simulation
- multiple modified blackbodies along the line-of-sight (decorrelation)

Two independent component separation methods

COMMANDER (parametric)

Joint Bayesian fitting of CMB and foregrounds with Gibbs sampling

$$\begin{cases} s_{\text{CMB}}^{(i+1)} \leftarrow P\left(s_{\text{CMB}} \middle| C_{\ell}^{(i)}, \beta^{(i)}, d\right) \\ C_{\ell}^{(i+1)} \leftarrow P\left(C_{\ell} \middle| s_{\text{CMB}}^{(i)}\right) \\ \beta^{(i+1)} \leftarrow P\left(\beta \middle| s_{\text{CMB}}^{(i+1)}, d\right) \end{cases}$$

✤ NILC (blind)

Blind minimum-variance ILC projection in needlet space

$$s_{\rm CMB} = (a^{\rm t} {\rm C}^{-1} a)^{-1} a^{\rm t} {\rm C}^{-1} d$$

Probe class mission study submitted to NASA and Astro2020 Decadal Panel

arXiv:1902.10541

(G)NILC

- Foreground residuals controlled below $r = 5 \times 10^{-4}$ over the whole range of multipoles $2 \le \ell \le 200$
- Irrespective of the complexity of the foregrounds Two dust MBBs (model A), non-MBB physical dust (model B), MHD with line-of-sight MBBs (model C)

Probe class mission study submitted to NASA and Astro2020 Decadal Panel

arXiv:1902.10541

Probe class mission study submitted to NASA and Astro2020 Decadal Panel

arXiv:1902.10541

PICO follow-up activities on foregrounds

- Results from NILC by Mathieu Remazeilles: today's focus
- Results from COMMANDER by Ragnhild Aurlien: forthcoming

r = 0.003

Model 91, r = 0.003

Model 92, r = 0.003

r = 0.003

Model 92

Model 91

Robust recovery of the tensor-to-scalar ratio irrespective of the foregrounds complexity

$\gamma = 0$

Mathieu Remazeilles

Baseline 21-800 GHz

Model 91, r = 0

Unbiased estimation of the tensor-to-scalar ratio consistent with r = 0

Baseline 21-800 GHz

Model 92, r = 0NILC

Unbiased estimation of the tensor-to-scalar ratio consistent with r = 0

Model 92, r = 0

Discarding low / high frequencies tends to bias the tensor-to-scalar ratio by more than one sigma

Summary

□ PICO allows to control foreground contamination below $r = 5 \times 10^{-4}$

D Robustness of PICO results irrespective of different foreground skies

□ Importance of PICO high frequencies to help foreground cleaning

Next steps (ongoing activities)

 Importance of PICO high frequencies to inform on dust mismodelling and false detection of r ?
 Breaking foreground model degeneracies Chi-square evidence for mismodelling

□ Need for high-resolution synchrotron observations at low frequency ?

Non-gaussian small-scale fluctuations of synchrotron may distort spectral models at large angular scales (higher-order moments / effective curvature)

Results forthcoming from COMMANDER by Ragnhild Aurlien and the Oslo team!