The First Flight of SPIDER Probing Inflation from the Stratosphere

> Jeff Filippini ILLINOIS

APS April - Apr. 18, 2021

B-modes: Goals and Challenges

Target: B-mode polarization in the CMB at degree angular scales

Rigid control of polarized <u>systematics</u> Instrument symmetry

-	1	
-	-	
	1	
-	-	

PRECISION

Approach photon noise limit Few photons, many detectors

ACCURACY

Why Ballooning?

The Good

- High sensitivity to approach CMB photon noise limit
- Access to higher frequencies obscured from the ground
- Technology pathfinder for orbital missions

se limit

The Bad

- Limited integration time (~weeks)
- Stringent mass, power constraints
- Very limited bandwidth demands nearly autonomous operations

Excellent proxy for space operations!

The SPIDER Program

A **balloon-borne** payload to identify primordial B-modes on degree angular scales in the presence of **foregrounds**

1. Verify angular power spectrum and isotropy Large (~10%) sky coverage

2. Verify **frequency spectrum** Multiple colors, (esp. 200+ GHz)

Ade+ arXiv:2103.13334 (2021) Nagy+ ApJ 844, 151 (2017) Rahlin+ Proc. SPIE (2014) Fraisse+ JCAP 04 (2013) 047

O'Dea+ ApJ 738, 63 (2011) Filippini+ Proc. SPIE (2010) ... and more ...

Major support from NASA APRA (mission), NASA SAT (detectors), **NSF OPP** (Antarctic support)

Balloonatics

UNIVERSITY OF M INYUVESI YAKWAZULU-NATALI

The SPIDER 2015 Payload Pivot • Six monochromatic refractors (3x95, 3x150 GHz) Telescope aperture Sun shield Vacuum vessel / Top dome Vacuum vessel / Midsection Hermetic feedthroughs gondola Reaction - Low-G, low-noise design; dual-TES for calibration wheel Support instrumentation package (SIP)

- Large (1300 L) shared LHe cryostat
- Lightweight carbon fiber gondola
 - Az/el drives, redundant pointing sensor suite
 - Launch mass 3000kg
- Cold HDPE lenses, 270mm stop
 - Stepped sapphire half-wave plate
- Design emphasis on low internal loading - 1.6 K absorptive baffling, reflective fore baffle - Reflective filter stack, thin (3/32") window
- JPL antenna-coupled TES bolometer arrays
- Time-division SQUID multiplexer (NIST, UBC) - Extensive magnetic shielding

Carbon fiber

- Large (1300 L) shared LHe cryostat
- Lightweight carbon fiber gondola - Az/el drives, redundant pointing sensor suite - Launch mass 3000kg
- Six monochromatic refractors (3x95, 3x150 GHz)
 - Cold HDPE lenses, 270mm stop
 - Stepped sapphire half-wave plate
- Design emphasis on low internal loading
 - 1.6 K absorptive baffling, reflective fore baffle
 - Reflective filter stack, thin (3/32") window
- JPL antenna-coupled TES bolometer arrays - Low-G, low-noise design; dual-TES for calibration
- Time-division SQUID multiplexer (NIST, UBC) - Extensive magnetic shielding

The SPIDER 2015 Payload

- Large (1300 L) shared LHe cryostat
- Lightweight carbon fiber gondola - Az/el drives, redundant pointing sensor suite - Launch mass 3000kg
- Six monochromatic refractors (3x95, 3x150 GHz) - Cold HDPE lenses, 270mm stop - Stepped sapphire half-wave plate
- Design emphasis on low internal loading - 1.6 K absorptive baffling, reflective fore baffle - Reflective filter stack, thin (3/32") window
- JPL antenna-coupled TES bolometer arrays - 2400 TESs, low-noise design; dual-TES for calibration
- Time-division SQUID multiplexer (*NIST, UBC*) - Extensive magnetic shielding

SPIDER Aloft!

- January 1-18, 2015 ~35 km altitude
- All* systems functional! *except dGPS, no science impact
- Full hardware and data recovery in 2015 with help of **British Antarctic Survey**

In-Flight Performance

 Exceptionally low internal loading 95 GHz: \leq 0.25 pW total absorbed 150 GHz: ≤ 0.35 pW total absorbed

- Flagging of samples and channels
 - Negligible from **cosmic rays** Osherson+, JLTP 199,1127–1136 (2020)
 - Significant from RFI Transmitter handshake every ~1 minute
 - Strict channel / sky cuts this analysis ~1/4 of scan time outside analysis region Wide exclusion around fridge cycles One 150 GHz receiver excluded
- Scan-synchronous pickup (~*CMB dipole*) Addressed for now with aggressive filtering

Band	Center [GHz]	Width [%]	FWHM [arcmin]	# Det. Used	NET _{tot} [µK√s]	Data Used [days]	Map De [µK ∙ arcı
95 GHz	94.7	26.4	41.4	675	7.1	6.5	22.5
150 GHz	151.0	25.7	28.8	815	6.0	5.6	20.4

Monitoring and Calibration

Pre-flight calibrations

TESs, pol angle, FTS spectra, near-field beams, ...

Autonomous detector operations

Electrical bias step response during scan turnarounds used as proxy for CMB gain variation

Monitor loop adjusts TES biases (and SQUID tuning) as needed; downlinks minimal statistics

Post-flight

Beam, gain regression against Planck maps

Simulations of effects of known systematics Negligible at required sensitivity

Electrical calibration correlates well with in-flight gain estimates

1992 deg² rectangle, point sources cut

The View From Above

From Maps to Power Spectra

- Two independent power spectrum estimation pipelines
 - **XFaster**: Hybrid maximum likelihood *Pseudo-Cl + iterative quadratic estimator* A.E. Gambrel, A.S. Rahlin, C. Contaldi, ... arXiv:2104.01172
 - NSI: "Noise Simulation Independent" Covariances among data subsets No noise simulations J. Nagy, J. Hartley, S. Benton, J. Leung, ...
- Suite of **null tests** to confirm internal consistency in both pipelines
- Full time-domain **simulations** to calibrate methods and estimate systematic effects

Raw Power Spectra

Power spectra over 9 "science" bins Multipoles $33 \le \ell \le 257$ Good agreement among estimators

Multiple foreground cleaning techniques

- Spatial template subtraction
 Planck 353-100 / 217-100 templates
- SMICA Harmonic domain model
- Harmonic SED fitting
 Multi-component synchrotron + dust

See talk by Johanna Nagy

Error bars do not include sample variance, for ease of pipeline comparison

CMB and Constraining r

353GHz template subtraction; sample variance included

200 Feldm

Expanded frequency coverage to resolve Galactic dust with post-Planck sensitivities over a large sky area

Commander foreground estimate

3x 280 GHz receivers, new optical design Best 95/150 receivers from first flight Rebuilt cryostat and gondola

Flight ready and awaiting launch opportunity!

Dust Busters

NIST platelet horn array AIMn science TES

Central Pixel

Detectors and Readout TDM SQUID readout **Cold Optics** Stepped half-wave plate **Control Systems Analysis and Cosmology**

SPIDER and Inflation Probe

- Antenna- & Horn-Coupled TES arrays
- HDPE optics, filters, baffling

- Automated SQUID / TES management
- Bias step monitoring of TES

- XFaster power spectrum estimator
- Foreground separation techniques

Conclusions

SPIDER's first voyage to near-space was very successful!

Primordial gravitational waves remain elusive 95/150 GHz, 6% of the sky: r<0.11 (0.19)

Foreground analysis rich and ongoing: more to come!

Rich in-flight experience relevant Inflation Probe TES arrays, TDM readout, HWPs, automation, analysis, ...

SPIDER-2 is ready to map the sky at 280 GHz

