LiteBIRD Cosmic Microwave Background Polarization Mission

Adrian T. Lee

University of California, Berkeley Physics Department and Space Sciences Laboratory On behalf of the LiteBIRD Joint Study Group

LiteBIRD Joint Study Group

> 250 researchers from Japan, North America & Europe

M. Hazumi^{1,2,3,4}, P.A.R. Ade⁵, A. Adler⁶, E. Allys⁷, K. Arnold⁸, D. Auguste⁹, J. Aumont¹⁰, R. Aurlien¹¹, J. Austermann¹², C. Baccigalupi¹³, A.J. Bandav¹⁰, R. Banerii¹¹, R.B. Barreiro¹⁴, S. Basak¹⁵, J. Beall¹², D. Beck¹⁶, S. Beckman¹⁷, J. Bermejo¹⁸, P. de Bernardis¹⁹, M. Bersanelli²⁰, J. Bonis⁹, J. Borrill^{21,22}, F. Boulanger⁷, S. Bounissou²³, M. Brilenkov¹¹ M. Brown²⁴, M. Bucher²⁵, E. Calabrese⁵, P. Campeti¹³, A. Carones²⁶, F.J. Casas¹⁴, A. Challinor^{27,28,29}, V. Chan³⁰, K. Cheung¹⁷, Y. Chinone³¹, J.F. Cliche³², L. Colombo²⁰. F. Columbro¹⁹, J. Cubas³³, A. Cukierman^{17,16}, D. Curtis²², G. D'Alessandro¹⁹, N. Dachlythra³⁴, M. De Petris¹⁹, C. Dickinson²⁴, P. Diego-Palazuelos¹⁴, M. Dobbs³² T. Dotani², L. Duband³⁵, S. Duff¹², J.M. Duval³⁵, K. Ebisawa², T. Elleflot³⁶, H.K. Eriksen¹¹ J. Errard²⁵, T. Essinger-Hileman³⁷, F. Finelli³⁸, R. Flauger⁸, C. Franceschet²⁰, U. Fuskeland¹¹ M. Galloway¹¹, K. Ganga²⁵, J.R. Gao³⁹, R. Genova-Santos⁴⁰, M. Gerbino⁴¹, M. Gervasi⁴² T. Ghigna^{3,43}, E. Gjerløw¹¹, M.L. Gradziel⁴⁴, J. Grain²³, F. Grupp⁴⁵, A. Gruppuso³⁸, J.E. Gudmundsson³⁴, T. de Haan¹, N.W. Halverson⁴⁶, P. Hargrave⁵, T. Hasebe², M. Hasegawa¹, M. Hattori⁴⁷, S. Henrot-Versillé⁹, D. Herman¹¹, D. Herranz¹⁴, C.A. Hill^{36,17}, G. Hilton¹², Y. Hirota⁴⁸, E. Hivon⁴⁹, R.A. Hlozek³⁰, Y. Hoshino⁵⁰, E. de la Hoz¹⁴. J. Hubmayr¹², K. Ichiki⁵¹, T. Iida⁵², H. Imada⁵³, K. Ishimura⁵⁴, H. Ishino⁵⁵, G. Jaehnig⁴⁶ T. Kaga², S. Kashima⁵³, N. Katayama³, A. Kato^{1,4}, T. Kawasaki⁵⁶, R. Keskitalo^{21,22}, T. Kisner^{21,22}, Y. Kobayashi⁴⁸, N. Kogiso⁵⁷, A. Kogut³⁷, K. Kohri¹, E. Komatsu⁵⁸ K. Komatsu⁵⁵, K. Konishi⁴⁸, N. Krachmalnicoff¹³, I. Kreykenbohm⁵⁹, C.L. Kuo^{60,16}, A. Kushino⁶¹, L. Lamagna¹⁹, J.V. Lanen¹², M. Lattanzi⁶², A.T. Lee^{17,36}, C. Leloup²⁵, F. Levrier⁷, E. Linder^{22,36}, T. Louis⁹, G. Luzzi⁶³, T. Maciaszek⁶⁴, B. Maffei²³, D. Maino²⁰ M. Maki¹, S. Mandelli²⁰, E. Martinez-Gonzalez¹⁴, S. Masi¹⁹, T. Matsumura³, A. Mennella²⁰ M. Migliaccio²⁶, Y. Minami¹, K. Mitsuda⁵³, J. Montgomery³², L. Montier¹⁰, G. Morgante³⁸ B. Mot¹⁰, Y. Murata², J.A. Murphy⁴⁴, M. Nagai⁵³, Y. Nagano⁵⁵, T. Nagasaki¹, R. Nagata², S. Nakamura⁶⁵, T. Namikawa²⁷, P. Natoli⁴¹, S. Nerval³⁰, T. Nishibori⁶⁶, H. Nishino³¹, F. Noviello⁵, C. O'Sullivan⁶⁷, H. Ogawa⁵⁷, H. Ogawa², S. Oguri², H. Ohsaki⁴⁸, I.S. Ohta⁶⁸ N. Okada², N. Okada⁵⁷, L. Pagano⁴⁰, A. Paiella¹⁹, D. Paoletti³⁸, G. Patanchon²⁵, J. Peloton⁹, F. Piacentini¹⁹, G. Pisano^{19,5}, G. Polenta⁶⁹, D. Poletti¹³, T. Prouvé³⁵, G. Puglisi¹⁶, D. Rambaud¹⁰, C. Raum¹⁷, S. Realini²⁰, M. Reinecke⁵⁸, M. Remazeilles²⁴, A. Ritacco^{23,7} G. Roudil¹⁰, J.A. Rubino-Martin⁴⁰, M. Russell⁸, H. Sakurai⁷⁰, Y. Sakurai³, M. Sandri³⁸, M. Sasaki⁵⁹, G. Savini⁷¹, D. Scott⁷², J. Seibert⁸, Y. Sekimoto^{2,73,1}, B. Sherwin^{27,29,36}, K. Shinozaki⁶⁶, M. Shiraishi⁷⁴, P. Shirron³⁷, G. Signorelli⁷⁵, G. Smecher⁷⁶, S. Stever^{55,3} R. Stompor²⁵, H. Sugai³, S. Sugiyama⁵⁰, A. Suzuki³⁶, J. Suzuki¹, T.L. Svalheim¹¹, E. Switzer³⁷, R. Takaku^{2,77}, H. Takakura^{73,2}, S. Takakura³, Y. Takase⁵⁵, Y. Takeda², A. Tartari⁷⁵, E. Taylor¹⁷, Y. Terao⁴⁸, H. Thommesen¹¹, K.L. Thompson^{60,16}, B. Thorne⁴³. T. Toda⁵⁵, M. Tomasi²⁰, M. Tominaga^{73,2}, N. Trappe⁶⁷, M. Tristram⁹, M. Tsuji⁷⁴, M. Tsujimoto², C. Tucker⁵, J. Ullom¹², G. Vermeulen⁷⁸, P. Vielva¹⁴, F. Villa³⁸, M. Vissers¹². N. Vittorio²⁶, I. Wehus¹¹, J. Weller^{79,45}, B. Westbrook¹⁷, J. Wilms⁵⁹, B. Winter^{71,80}, E.J. Wollack³⁶, N.Y. Yamasaki², T. Yoshida², J. Yumoto⁴⁸, M. Zannoni⁴², and A. Zonca⁸¹

LiteBIRD Summary

- JAXA-led international mission proposal (12 countries) L-Class Mission Selected by JAXA in 2019
- Launch in late 2020s
- 3yr observation at Sun-Earth Lagrangian Point L2
- 15 Frequency Bands 34-448 GHz, 71-18 arc-min resolution

Main scientific objectives

Primordial Cosmology

- Definitive search for a signal from cosmic inflation
 - Either making a discovery or ruling out well-motivated inflationary models

Fundamental Physics

– Energy Scale: Insight into quantum nature of gravity, other new physics

- Level-1 Requirement: $\delta r < 0.001$ total error
- This total error includes:
 - $\sigma_{stat} < 5.7 \times 10^{-4}$ inc. foreground removal
 - $\sigma_{syst} < 5.7 \times 10^{-4}$
 - Margin = 5.7×10^{-4}
- There is no delensing assumed here

- 2nd Level-1 Requirement
 - > 5σ detection of both Reionization and Recombination bumps for r = 0.01 (τ = 0.05)

LiteBIRD Inflation Constraints

Why Space?

History: COBE, WMAP, and Planck are reference experiments

- Advantages of Space:
 - Access to all frequencies
 - Important for foreground meas.
 - Absence of atmospheric fluctuations →
 Access to lowest multipoles
 - Measure Reionization and Recombination bumps
 - L2 enables bright objects (sun/moon) to be behind spacecraft.
- Complementarity
 - Ground gives delensing data
 - LiteBIRD gives foreground information

Map Noise

Polarization Modulation Unit (PMU) Operation Principle

Rotation test of superconducting magnetic bearing system in the 4K cryostat. The stable rotation at cryogenic temperature (<10K).

Systematics and Calibration

- One of the largest study groups at LiteBIRD
- Systematic approach for systematic uncertainties

LiteBIRD Science Outcomes

1. Tensor-to-scalar ratio, r, from top-level mission requirements

The following items (2-9) do not drive mission/system requirements, but will be guaranteed if (1) is achieved.

- 2. Further improving sensitivity on *r* with external data
- 3. Characterization of B-mode and search for source fields (e.g scale-invariance, non-Gaussianity, parity violation)
- 4. Power spectrum features in polarization
- 5. Large-scale E-modes
 - its implications for reionization history and the neutrino mass
- 6. Cosmic birefringence
- 7. SZ effect (thermal and relativistic correction)
- 8. Elucidating anomalies
- 9. Galactic science

Targeted mission requirements and rich scientific outcomes

JAXA-led focused mission

• δ(r)<0.001

• $2 \leq \ell \leq 200$

focused but still with byproducts

<u>Ground-based</u> US-led telescopes (e.g. Simons Observatory, SPO, and CMB-S4)

- $30 \le \ell \le \sim 8000$
- Including delensing

- This powerful duo is a cost-effective strategy with great synergy
- MoU between LiteBIRD and CMB-S4 for science and technology under discussion

LiteBIRD Summary

- Selected for JAXA's L-class mission
- Expected launch in 2020s
- Observations for 3 years around Sun-Earth L2
- Full-sky degree-scale CMB polarization surveys
- Total polarization sensivitity: 2.16 μK-arcmin

Conclusion of the concept development studies Top-level mission requirements will be satisfied.

Discovery by LiteBIRD has huge impacts and will provide

- Direct evidence for inflation
- Knowledge on the inflation energy scale
- First evidence for quantum fluctuation of space-time
- Insight on quantum gravity, including String Theory

Backup Slides

Top-level mission requirements will be satisfied!

PCOS OF

- $\delta r < 1 \ge 10^{-3}$ (for r=0)
- >5 σ observation for each bump (for r≥0.01)

Angular scale

Rationale

- Large discovery potential for 0.005 < r < 0.05
- Clean sweep of single-field models with characteristic field-variation-scale of inflaton potential greater than m_{pl}
 - (A. Linde, JCAP 1702 (2017) no.02, 006)
 - Simplest and well-motivated R+R²
 "Starobinsky" model will be tested.

 $\sigma(r=0) = 0.6 \times 10^{-3}$

SQUID Controller Assembly

LFT Signal Processing unit

Challenge: Galaxy brighter than CMB signal

21

- Galactic foregrounds
 - Synchrotron Radiation and Dust Emission (plus others...)
 - Current Models Require 5-7 bands
- LiteBIRD
 - Separate foregrounds using 15 frequency bands 34-448 GHz (71-18 arcmin angular resolution)

