Particle Astrophysics at Zettavolt Energies with Radio Detectors in Low Lunar Orbit

Andres Romero-Wolf Jet Propulsion Laboratory, California Institute of Technology April 17, 2021

© 2021 California Institute of Technology. Government sponsorship acknowledged

Jet Propulsion Laboratory California Institute of Technology

Zettavolt Askaryan Polarimeter

Andrés Romero-Wolf^a, Jaime Alvarez-Muñiz^b, Luis A. Anchordoqui^c, Douglas Bergman^d, Washington Carvalho Jr.^e, Austin L. Cummings^f, Peter Gorham^g, Casey J. Handmer^a, Nate Harvey^a, John Krizmanic^{h,k}, Kurtis Nishimura^g, Remy Prechelt^g, Mary Hall Renoⁱ, Harm Schoorlemmer^j, Gary Varner^g, Tonia Venters^k, Stephanie Wissel^l, Enrique Zas^b

^aJet Propulsion Laboratory, California Institute of Technology, ^bIGFAE & Universidade Santiago de Compostela Steha College, City University of New York, ^dUniversity of Utah, ^eUniversidade do São Paulo, ^fGran Sasso Science Institute, ^gUniversity of Hawai' at Manoa, ^hUniversity of Maryland, ⁱUniversity of Iowa, ⁱMax Planck Institute, ^kNASA Goddard Space Flight Center, ^IPennsylvania State University, <u>Control of Control of Contr</u>

emission.

Low Radio Frequencies Provide Access to Higher Energies

- Frequencies < 300 MHz have wide radio beams with a large range of view angles producing a detectable signal at ultra-high energies.
- Frequencies > 300 MHz are narrowly beamed with a small range of view angles producing a detectable signal.

ZAP - prospects

Antenna array in lunar orbit operating for 2 years can increase the statistics by an order of magnitude with full sky coverage.

ZAP Science – acceleration mechanisms

- Interactions of UHE cosmic rays with photon ٠ background (e.g. radio, microwave, IR, optical) result in energy loss during propagation.
- Auger and TA show a clear suppression (20 σ ٠ significance).
- Increasing mass composition with increasing • energy can mean one of two things:
 - Rigidity-dependent maximum energy of nearby sources is limited (running out of steam).
 - Heavier elements are suppressed due to photon fields at the source while lighter elements are not.
 - $E_{max} \propto Z$ • $\frac{dE}{dx} \propto A$
- Prediction is that the subdominant proton ٠ spectrum is recovered for $E>10^{20.2}$ eV.

ZAP Science – composition at the highest energies

- ZAP is not sensitive to X_{max} (nuclear composition).
- However, it can test for clustering of hot spots as a function of energy.
- Composition is expected to get heavier with increasing energy.
- Clustering of hotspots as a function of energy could identify clusters could reveal sources of light particles at ultra-high energies expected from energy cutoffs due to photon field.
- This finding would be important for prospects of neutrino astronomy at ultra-high energies.

Scattering due to Galactic magnetic field deflections

$$\theta \sim 1^{\circ} Z \left(\frac{E}{100 \text{ EeV}}\right)^{-1}$$

Adapted from Anchordoqui et al. 2020

ZAP Science – full sky anisotropy studies

- Independent identification the sources of the highest energy cosmic rays and test the mechanism by which the spectrum cuts off.
- Full sky coverage with $\gtrsim 1000$ events with $E \gtrsim 10^{19.6} \mbox{ eV}$

	Table 1-1: Anisotropy 5 σ requirements.				
	Parameter		Num. of Events Required		
	f _{sig}	Θ	AGN	SBG	2MRS
	10%	20°	1240	2,060	>5,000
		15°	920	1,910	4,830
	15%	20°	680	1,000	2,550
		15°	660	870	2,280
	20%	20°	<650	<650	1,520
		15°	<650	<650	1,320

2MRS

ZAP Science – Channels for detection of superheavy dark matter

SHDM identified >ZeV ν 's and γ 's and directionally correlated with local DM distribution.

Image credit: new scientist

Purely electromagnetic showers can be identified via the LPM effect.

Expected to provide order of magnitude improvements in SHDM constraints.

Detector Concept

SmallSat array of short dipoles (\sim 1m)

BEACON short dipoles demonstrated Galactic noise limited sensitivity 30 – 80 MHz band.

Sky noise-limited sensitivity of 1 m dipole with impedance transformer.

ANITA heritage of low power digitizers and triggering electronics.

Image credit: ANITA Collaboration

ZAP - Event Reconstruction

Planetary Science Application: Detecting Ice in the Permanently Shadowed Regions of Airless Bodies

- Evidence of relatively pure extensive ice deposits in Mercury's Permanently Shadowed Regions (PSRs).
- Only traces of water ice have been found on the surface of lunar PSRs.
- The Moon could host extensive ice deposits at > 1 m depths.
- UHECRs illuminate subsurface ice!

Image Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington/National Astronomy and Ionosphere Center, Arecibo Observatory

Image Credit: Li et al. PNAS 2018

Image credit: P. Gorham w/ Remcom XFDTD

Planetary Science Application: Detecting Ice in the Permanently Shadowed Regions of Airless Bodies

- Evidence of relatively pure extensive ice deposits in Mercury's Permanently Shadowed Regions (PSRs).
- Only traces of water ice have been found on the surface of lunar PSRs.
- The Moon could host extensive ice deposits at > 1 m depths.
- UHECRs illuminate subsurface ice!

Image Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington/National Astronomy and Ionosphere Center, Arecibo Observatory

Image Credit: Li et al. PNAS 2018

Image credit: P. Gorham w/ Remcom XFDTD

Outlook and Conclusions

- Lunar detector concept under development.
 - Event clustering simulations at the highest energies.
 - Particle and radio emission propagation models for the Moon.
 - Development of ultra-wide band electrically short dipole.
 - Sensitivity to extensive ice deposits.
- Initial estimates of a low-frequency antenna array in lunar orbit show promising prospects for extremely high energy particles not available to ground arrays.
- ZAP offers a low cost way to search for extensive ice deposits in the permanently shadowed regions of airless bodies.