The Roadmap to the POEMMA mission PROBE OF EXTREME MULTI-MESSENGER ASTROPHYSICS

Angrela V. Olimto

John K. Krizmanic NASA/GSFC University of Maryland, Baltimore Co.

POEMMA Collaboration

USA: University of Chicago: A. V. Olinto (PI), S. S. Meyer, J. Eser, R. Diesing; NASA/GSFC: J. F. Krizmanic (deputy PI), E. Hays, J. McEnery, J. W. Mitchell, J. S Perkins, F. Stecker, T. M. Venters; NASA/MSFC: P. Bertone, M.J. Christl, R. M. Young; Colorado School of Mines: F. Sarazin, L. Wiencke, G. Filippatos, V. Kungel, K.-D. Merenda; University of Alabama, Huntsville: J. Adams, E. Kuznetsov, P. Reardon, University of Utah: D. R. Bergman; University of Maryland: C. Guepin; City University of New York, Lehman College: L. Anchordogu, T. C. Paul, J. F. Soriano; Georgia Institute of Technology: A. N. Otte, M. Bagheri, E. Gazda, O. Romero Matamala; Space Sciences Laboratory, University of California, Berkeley: E. Judd; University of Iowa: M. H. Reno, Y. Onel, J. Nachtman, D. Winn; KIPAC, Stanford: K. Fang **CZECH Rep: Palacký University:** K. Cerny, **Czech Academy of Sciences**: D. Mandát, M. Pech, P. Schovánek **DENMARK: NBI:** M. Bustamante FRANCE: APC Univerite de Paris 7: E. Parizot, G. Prevot; IAP, Paris: C. Guepin **GERMANY: KIT:** R. Engel, A. Haungs, R. Ulrich, M. Unger; ITALY: Universita di Torino: M. E. Bertaina, D. Barghini, M. Battisti, F. Bisconti, F. Fenu, H. Miyamoto, Z. Plebaniak; Gran Sasso Science Institute: R. Aloisio, A. L. Cummings, I. De Mitri; INFN Frascati: M. Ricci, INFN Tor Vergata: M. Casolino, L. Marceli, U. of Rome Tor Vergata: P. Picozza; INFN, Catania: A. Anzalone, INFN, Bari: F. Cafagna, Univ. Catania: R. Caruso, **INFN, Napoli:** G. Osteria, JAPAN: RIKEN: M. Casolino,, Y. Takizawa MEXICO: UNAM: G. Medina Tanco NORWAY: NTNU: F. Oikonomou POLAND: University of Warsaw: L. W. Piotrowski; NCNR, Lodz: K. Shinozaki RUSSIA: MSU: P. Klimov, M. Zotov **SLOVAKIA: IEP, Slovak Academy of Science:** S. Mackovjak 76 scientists from 38 institutions and 13 countries SWITZERLAND: University of Geneva: A. Neronov OWL, JEM-EUSO, Auger, TA, Veritas, CTA, Fermi, Theory

POEMMA & EUISO APS Talks

Saturday, April 17, 2021

D10.00001 : Overview of the POEMMA Observatory, Angela V. Olinto, et al.

D10.00002 : Overview of the EUSO-SPB2 mission, Johannes Eser, et al.

D10.00003 : The EUSO-SPB2 Cherenkov Telescope, Performance of Camera, Eliza Gazda, et al.

D10.00004: Status of the EUSO-SPB2 Fluorescence Detector, George Filippatos

D10.00009: EUSO-SPB2 Telescope Optics and Testing, Viktoria Kungel

D21.00005: The EUSO-SPB2 mission, Lawrence Wiencke

D21.00006 : The Roadmap to the POEMMA Mission, Angela V. Olinto, et al.

Sunday, April 18, 2021

K10.00001: nuSpaceSim: A Comprehensive Simulation Package ...Neutrinos for Space-based Experiment, John Krizmanic K10.00002: NuPyProp - A Pythonic Monte Carlo Neutrino tau-lepton Simulation Package, Sameer Patel

Monday, April 19, 2021

Q10.00009 : Model independent probes of macroscopic dark matter with EUSOSPB2, Thomas Paul, et al. S10.00005 : Prospects for EUSO-SPB2 detection of transient astrophysical sources of neutrinos, Mary Hall Reno, et al. S10.00007 : Targets of Opportunity with POEMMA, Tonia Venters, et al.

Tuesday, April 20, 2021

X10.00005 : Sensitivities of UHE neutrino experiments to DM direct annihilation and decay to neutrinos, Claire Guepin, et al.

Astroparticle Physics Questions:

What are the sources of the **Ultra-High Energy Cosmic Rays** (UHECRs)? Measure Spectrum, Composition, Anisotropies E>10¹⁹ eV = 10 EeV

What are the sources of Astrophysical Neutrinos?

Multi-Messenger coincidence gamma-ray, gravitational waves, and neutrinos with $E>10^{16} eV = 10 PeV$

What is the physics and astrophysics at energies >> "ground-based" accelerators? Are there New Interactions or Dark Matter signatures (e.g., Secret Neutrino Interactions, Extra-Dimensions, Supermassive Dark Matter, Macroscopic Dark Matter)?

Extensive Air Showers

Auger Spectrum ICRC 2019

8

Auger (and TA) Anisotropy Hints > 40 EeV Starbursts Galaxies (SBGs) or Active Galactic Nuclei (AGN)?

Cosmogremic & Astrophysical Messengrers

Batista et al, arXiv:1903.06714.pdf

estimated neutrino energy of 300TeV

Probe Of Extreme Multi-Messenger Astrophysics UHECRs and Cosmic Neutrinos

SEMMA

POEMMA at NASA-GSFC

Instrument Design Lab: Jul 31-Aug 4, 2017 Mission Design Lab: Oct 30-Nov 3, 2017

Pre-IDL Design

TABLE I: POEMMA Specifications:

Photometer	Components		Spacecraft	
Optics	Schmidt	45° full FoV	Slew rate	90° in 8 min
	Primary Mirror	4 m diam.	Pointing Res.	0.1°
	Corrector Lens	3.3 m diam.	Pointing Know.	0.01°
	Focal Surface	1.6 m diam.	Clock synch.	10 nsec
	Pixel Size	$3 \times 3 \text{ mm}^2$	Data Storage	7 days
	Pixel FoV	0.084°	Communication	S-band
PFC	MAPMT (1 μ s)	126,720 pixels	Wet Mass	3,450 kg
PCC	SiPM (20 ns)	15,360 pixels	Total Power	880 W
Photometer	(One)		Mission	(2 Observatories)
	Mass	1,550 kg	Lifetime	3 year (5 year goal)
	Power	590 W	Orbit	525 km, 28.5° Inc
	Data	< 1 GB/day	Orbit Period	95 min
		Observatory Sep. ~25 - 1000+ km		

Each Observatory = Photometer + Spacecraft; POEMMA Mission = 2 Observatories

3 PDMs

POEMMA

Hybrid Focal Surface

UV Fluorescence MAPMTs with BG3 filter: 1 usec sampling

Cherenkov Detection SiPMs:

20 nsec sampling

55 Photo Detector Modules (PDMs) TOTAL 126,720 pixels (1 PDM = 36 MAPMTs = 2,304 pixels)

30 SiPM focal surface units Total 15,360 pixels 512 pixels per FSU (64x4x2)

EUSO-SPB2 Cherenkov Camera

POEMMA Mission

Mission Lifetime:	3 years (5 year goal)	
Orbits:	525 km, 28.5° Inc	
Orbit Period:	95 min	
Satellite Separation:	~25 km – 1000+ km	
Satellite Position:	1 m (knowledge)	
Pointing Resolution:	0.1°	
Pointing Knowledge:	0.01°	
Slew Rate:	8 min for 90 °	
Satellite Wet Mass:	3860 kg	
Power:	2030 W	
Data:	1 GB/day	
Data Storage:	7 days	
Communication:	S-band (X-band if need	
Clock synch (timing):	10 nsec	

Operations:

- Each satellite collects data autonomously

led)

- Coincidences analyzed on the ground
- View the Earth at near-moonless nights, charge in day and telemeter data to ground
- ToO Mode: dedicated com uplink to reorient satellites

Observation Modes	Telescope Separation	Pointing	Science Goals (section)
POEMMA-Stereo (mode-2)	~300 km	down close to Nadir; overlapping atmospheric volumes	UHECR fluorescence (2.2, 2.3) precision stereo reconstruction UHECR lower energies 10s EeVs
	~25 km	towards the Limb; azimuth follows ToO target overlapping volume at Limb	Neutrino Cherenkov (2.4, 2.5, 2.6) ToO-stereo
POEMMA-Limb (mode-3)		towards the Limb; overlapping volume nearby non-overlapping at Limb	UHECR fluorescence (2.2, 2.3) stereo reconstruction 10s EeV monocular for 100s EeVs
	~300 km	fast slew towards the Limb from POEMMA-Stereo mode azimuth follows ToO target	Neutrino Cherenkov (2.4, 2.5, 2.6) ToO-dual

Observing Modes

Nadir for UHECR: Radius 200-400 km

Limb for Neutrinos & UHECRs: Radius 3 10³ km

POEMMA UHECR Exposure

POEMMA: Neutrinos

Monday, April 19, 2021 S10.00007 : Targets of Opportunity with POEMMA, Tonia Venters, et al.

POEMMA designed to observe neutrinos with E > 20 PeV through Cherenkov signal of tau decays.

High-Energy Astrophysical Events generates neutrinos (v_e , v_μ) and 3 neutrino flavors reach Earth (Oscillations). Tau neutrinos generate tau leptons on their way out of the Earth's surface which decay producing up-going showers, detected by POEMMA

POEMMA: Neutrino Target of Opportunity

arXiv:1906.07209 Venters et al 2019 Transient Events - 10s neutrinos/event from 10s of Mpc

Artist's rep NS-NS merger. Credit: NSF/LIGO/SSU/A. Simonnet.

Artist's rep WD-WD merger Credit: Ars Technica

Artist's rep BH-BH merger. Credit: NASA / JPL/ Swinburne Astron.Prods

NS-NS merger Ar

SWIFT NEUTRON STAR COLLISION V. 2

ANIMATION: DANA BERRY 310-441-1735 Binary Produced by Erica Drezek Coalescence

Long Bursts							
	No. of ν 's at	No. of ν 's at	Largest Distance for				
Source Class	GC	$3 { m Mpc}$	1.0 ν per event	Model Reference			
TDEs	1.1×10^{5}	0.8	$3 { m Mpc}$	Dai and Fang [17] average			
TDEs	5.6×10^{5}	3.9	$6 \mathrm{Mpc}$	Dai and Fang [17] bright			
				Lunardini and Winter [18]			
				$M_{ m SMBH} = 5 imes 10^6 M_{\odot}$			
TDEs	$2.2 imes10^8$	$1.4 imes10^3$	$115 \; \mathrm{Mpc}$	Lumi Scaling Model			
				Lunardini and Winter [18]			
TDEs	$6.3 \times 10'$	396	62 Mpc	Base Scenario			
				RFGBW [19] – $FSRQ$			
	NT 4 4	NT 4 4		proton-dominated advective escape			
Blazar Flares	NA*	NA*	43 Mpc	model			
IGRB Reverse	0.0×10^{4}	0.7	9 Mac	Munece [15]			
Snock (ISM)	9.9×10^{-1}	0.7	2 Mpc	Murase [15]			
GRB Reverse	2.0×10^{7}	144	27 Mp.e	Munoco [15]			
BH BH	2.0 X 10	144	57 Mpc	Kotora and Silk [20] (rescaled)			
morgor	2.3×10^{7}	160	39 Mpc	Low Fluonco			
BH-BH	2.3 \ 10	100	5 5 Mpc	Kotera and Silk [20] (rescaled)			
merger	2.4×10^{8}	1.7×10^{3}	119 Mpc	High Fluence			
NS-NS merger	3.6×10^{6}	24.8	13 Mpc	Fang and Metzger [21]			
WD-WD merger	20.0	0	33 kpc	XMMD [22]			
Newly-born	20.0	0	oo npe				
Crab-like pulsars							
(p)	1.6×10^2	1.1×10^{-3}	$98 \ \mathrm{kpc}$	Fang $[23]$			
Newly-born							
magnetars (p)	2.1×10^4	0.1	$1 \mathrm{Mpc}$	Fang $[23]$			
Newly-born							
magnetars (Fe)	4.1×10^4	0.3	$2 \mathrm{Mpc}$	Fang $[23]$			
Short Bursts							
	No. of ν 's at	No. of ν 's at	Largest Distance for				
Source Class	GC	$3 { m Mpc}$	1.0 ν per event	Model Reference			
sGRB Extended							
Emission							
()	0.0 107	0 7 102	01 Mar	IZMMIZ [16]			

(*) Not applicable due to a lack of known blazars within 100 Mpc.

Artist's rep TDE (star torn BH). Credit: NASA / CXC / M. Weiss

Tidal Disruption Events

M87

EVENT HORIZON TELESCOPE COLLABORATION/MAUNAKEA OBSERVATORIES/ASSOCIATED PRESS

Gamma Ray Bursts

Crab 965 years ago

Newborn Pulsars

Credits: X-ray: NASA/CXC/ASU/J.Hester et al.; Optical: NASA/HST/ASU/J.Hester et al.

Transient Neutrino Point Source Sensitivity

Long Bursts

Fang & Metzger, arXiv:1707.04263

Venters et al. arXiv:1906.07209 and AVO et al. arXiv:2012.0794

POEMMA Predecessors

Based on OWL 2002 study, JEM-EUSO, EUSO balloon & SPB experience, and CHANT proposal

JEM-EUSO program

Joint Experiment Missions Extreme Universe Space Observatory

EUSO-TA (2013-)

EUSO-Balloon (2014)

EUSO-SPB1 (2017) Mini-EUSO (2019) EUSO-SPB2 (2023)

EECP

K-EUSO (2024+)

POEMMA (2028+)

12°

EUSO-BALLOON (2014) 40km

Fluorescence

TA-EUSO (2013)

EUSO-SPÉ

Atmosphe

Cherenkov

100km

EUSO-SPB Extreme Universe Space Observatory on a Super Pressure Balloon

EUSO-SPB launch, April 24, 2017 23:51 UTC

POCKOCMOC

Ш.

оролёва

00

Bifocal Design

Cherenkov Telescopes FoV 5° X 45° bi-focal mirror FoV 5° X 45° normal mirror Focal Surface 7cm x 70cm

Fluorescence Telescope FoV 15° X 45° normal mirror

Corrector Plate: 1m² Image resolution: ~ few mm Pixel size: ~3mm square

Challenges/Opportunities:

Space qualified SiPMs, ultra-fast ASICs, corrector lens development, bifocal mirror SPB stability

Astroparticle Physics Questions:

What are the sources of the **Ultra-High Energy Cosmic Rays** (UHECRs)? Measure Spectrum, Composition, Anisotropies E>10¹⁹ eV = 10 EeV

What are the sources of **Astrophysical Neutrinos**?

Multi-Messenger coincidence gamma-ray, gravitational waves, and neutrinos with $E>10^{16} eV = 10 PeV$

What is the physics and astrophysics at energies >> "ground-based" accelerators? Are there New Interactions or Dark Matter signatures (e.g., Secret Neutrino Interactions, Extra-Dimensions, Supermassive Dark Matter, Macroscopic Dark Matter)?

POEMMA

UHECR and Neutrino Observations

Earth's Atmosphere = Particle Observatory to discover the Origin of the Highest Energy Cosmic Rays (E>10¹⁹ eV) and High Energy Neutrino Emission (E>10¹⁶ eV) from Astrophysical Events and Study New Astro/Physics

