

APRIL MEETING 2018 April 14-17, 2018 Columbus, Ohio CRSiG Mini Symposium, April 17, 2018

Cosmic Ray Energetics And Mass The CREAM Project

Eun-Suk Seo University of Maryland for the CREAM Collaboration

CREAM Collaboration

E. S. Seo^{a,b,*}, Y. Amare^a, T. Anderson^c, D. Angelaszek^{a,b}, N. Anthony^a, G. H. Choi^d, M. Chung^a, M. Copley^a, S. Coutu^c, L. Derome^e, L. Eraud^e, C. Falana^a, A. Gerrety^a, L. Hagenau^a, J. H. Han^a, H. G. Huh^a, Y. S. Hwang^f, H. J. Hyun^f, S. Im^c, H.B. Jeon^f, J. A. Jeon^d, I. S. Jeong^d, S. C. Kang,^f H. J. Kim^f, K. C. Kim^a, M. H. Kim^a, H. Y. Lee^d, J. Lee^d, M. H. Lee^a, C. Lamb^a, J. Liang^a, J. T. Link^g, L. Lu^a, L. Lutz^a, B. Mark^a, A. Menchaca-Rocha^h, T. Mernik^a, J. W. Mitchell^g, M. Mishner^a, S. I. Mognet^c, S. Morton^a, M. Nester^a, S. Nutterⁱ, O. Ofoha^a, H. Park^f, I. H. Park^d, J. M. Park^f, N. Picot-Clemente^a, S. Rostsky^a, J. R. Smith^a, T. Tatoli^a, P. Walpole^a, R. P. Weinmann^a, J. Wu^a, and Y. S. Yoon^{a,b}

^aInst. for Phys. Sci. and Tech., University of Maryland, College Park, MD, USA
 ^bDept. of Physics, University of Maryland, College Park, MD, USA
 ^cDept. of Physics, Penn State University, University Park, PA, USA
 ^dDept. of Physics, Sungkyunkwan University, Republic of Korea
 ^eLaboratoire de Physique Subatomique et de Cosmologie, Grenoble, France
 ^fDept. of Physics, Kyungpook National University, Republic of Korea
 ^gAstroparticle Physics Laboratory, NASA Goddard Space Flight Center, USA
 ^hInstituto de Fisica, Universidad Nacional Autonoma de Mexico, Mexico
 ⁱDept. of Physics and Geology, Northern Kentucky University, USA
 * Principal Investigator

Thanks to NASA HQ/GSFC WFF/JSC/MSFC/KSC, SpaceX and JAXA

Eun-Suk Seo

2

On the News: ISS-CREAM launch on SpaceX-12, 8/14/17

Cosmic ray catcher will probe supernovae from new perch

Balloon-borne detector moves to space to trap rare, high-energy particles that carry clues to their origin

fter 191 days aboard balloons sailing the stratosphere, an experiment designed to probe the galaxy's natural particle accelerators will move to higher ground: the International Space Station (ISS). The Cosmic Ray Energetics and Mass (CREAM) instrument and its successors floated above Antarctica seven times to collect high-energy cosmic that a few smash into Earth with extraordinarily high energies—higher than today's most powerful atom smashers can generate. Their abundance drops sharply with increasing energy, following what's known as a power law distribution. In 1949, Italian-American physicist Enrico Fermi came up with a mechanism that could explain that and the cosmic rays' mind-boggling energies: supernova shock waves. In the centuries after a supernova, a wave of accurace out

cosmic rays across the galaxy.

Aiming high

3

CREAM Cosmic Ray Energetics And Mass

Seo et al. Adv. in Space Res., 33 (10), 1777, 2004; Ahn et al., NIM A, 579, 1034, 2007

- Transition Radiation Detector (TRD) and Tungsten Scintillating Fiber Calorimeter
 - In-flight cross-calibration of energy scales

- Complementary Charge Measurements
 - Timing-Based Charge Detector
 - Cherenkov Counter
 - Pixelated Silicon Charge Detector

Eun-Suk Seo

CREAM Balloon Flight Heritage

Seven Balloon Flights in Antarctica: ~ 191 days Cumulative Exposure

BACCUS Balloon Payload 30 Days Flight

Kim et al. Proc. 35th ICRC, Busan, 182, 2017

BACCUS flight trajectory Nov. 28 – Dec. 28, 2016

- Boron And Carbon Cosmic rays in the Upper Stratosphere (BACCUS) set two records: the earliest launch, i.e., the first LDB to launch in November and (2) the closest landing to the launch site.
- BACCUS is to investigate cosmic ray propagation history using Boron to Carbon ratio at high energies where measurements are not available.
- The BACCUS experiment provides simultaneous measurements of cosmic-ray nuclei from Z = 1 to Z =26 using segmented silicon charge detector and timing charge detector. Both calorimeter and transition radiation detector provide energy measurements.

BACCUS was recovered with 1 Twin Otter and 1 Helicopter flight after landing on the Ross Ice Shelf only 55 creation miles east of McMurdo Station.

Eun-Suk Seo

PI Eun-Suk Seo, University of Marylan@

How do cosmic accelerators work?

Is the "knee" due to a limit in SNR acceleration?

- The all particle spectrum extends several orders of magnitude beyond the highest energies thought possible for supernova shocks
- And, there is a "knee" (index change) above 10¹⁵ eV
- Acceleration limit signature: Characteristic elemental composition change over two decades in energy below and approaching the knee
- Direct measurements of individual elemental spectra can test the supernova acceleration model

$$E_{\max} \sim \frac{v}{c} ZeBVT \sim Z \times E_{\max_p}$$

Elemental Spectra over 4 decades in energy

Yoon et al. ApJ 728, 122, 2011; Ahn et al., ApJ 715, 1400, 2010; Ahn et al. ApJ 707, 593, 2009

Distribution of cosmic-ray charge measured with the SCD. The individual elements are clearly identified with excellent charge resolution. The relative abundance in this plot has no physical significance.

CREAM spectra harder than prior lower energy measurements

Spectral Hardening Confirmed

Need to extend measurements to higher energies

ISS-CREAM: CREAM for the ISS

E. S. Seo et al, Advances in Space Research, 53/10, 1451, 2014

ISS-CREAM installed on the ISS 8/22/17

SpaceX-12 Launch on 8/14/2017

- Building on the success of the balloon flights, the payload has been transformed for accommodation on the ISS (NASA's share of JEM-EF).
 - Increase the exposure by an order of magnitude
- ISS-CREAM will measure cosmic ray energy spectra from 10¹² to >10¹⁵ eV with individual element precision over the range from protons to iron to:
 - Probe cosmic ray origin, acceleration and propagation.
 - Search for spectral features from nearby/young sources, acceleration effects, or propagation history.

Hurricane Harvey

ISS-CREAM

ISS-CREAM Instrument

Seo et al. Adv. in Space Res., 53/10, 1451, 2014; Smith et al. PoS(ICRC2017)199, 2017

Boronated Scintillator Detector (BSD) Link et al. PoS(ICRC2015)611, 2015.

 Additional e/p separation by detection of thermal neutrons. et al. PoS(ICRC2017)247, 2017.

- 20 layers of alternating tungsten plates and scintillating fibers.
- Determines energy.
- Provides tracking and trigger.

CREAM

Eun-Suk Seo

Hwang et al. JINT10 (07), P07018, 2015.

- Plastic scintillator instrumented with an array of 20 x 20 photodiodes for e/p separation.
- Independent trigger.

CREAM Science Operation

Web Monitoring and Data Distribution http://cosmicray.umd.edu/iss-cream/data

- Monitor performance of CREAM instrument using in-flight calibration data
 - Every hour: Noise level (pedestal runs) of Calorimeter, SCD, and TCD/BCD
 - Every two hours: Charge gain, HPD aliveness etc.
- Relay the housekeeping data to a web server for worldwide monitoring
 - 1558 housekeeping parameters every 5 sec
 - Provides warning by color display when values are out of range.
- Visualize interactions of cosmic rays in CREAM by generating event display plots of science events.
- Process all data and distribute them in ROOT format for analysis.
 - Refine the initial pre-launch detector calibrations channel by channel to reflect the actual flight conditions, including timedependent effects

EvtTime	11:37:45	CalHV6a	-0.08	HPD12	26.27
RawClb	0.00	CalHV6b	-0.05	HPD78	27.94
RawExt	0.00	CalHV7a	-0.08	HPD34	26.68
RawCD1	0.00	CalHV7b	-0.06	HPD56	25.91
RawCal	0.00	CalHV8a	-0.08	SFC-A	26.20
RawCD2	0.00	CalHV8b	-0.06	ColdPla2	26.08
TrgTime	18:00:00	CalBiasl	55.96	ColdPla3	-74.84
TrgTotal	0.00	CalBias2	55.44	ATCS3	27.18
TrgExt	0.00	CalBias3	56.11	ATCS4	26.39
TrgClb	0.00	CalBias4	55.35	ATCS5	25.98
TrgEHi	0.00	CalBias5	56.18	SFC-B	26.33
TrgELow	0.00	CalBias6	55.44	RedPM	25.93
TrgZClb	0.00	CalBias7	56.16	+X-YCP	23.88
NioTime	11:37:47	CalBias8	55.40	HKBox	24.80
NioTRate	1.93	BsdRet1	0.02	BottPla	23.62
NioNRate	0.00	BsdRet2	0.02	ATCS6	24.68
CMDQ	0.00	BsdTQB	26.49	+3o3VC	3.30
HKQ	0.00	BsdTQA	26.83	+5o2VC	5.00
EVTQ	0.00	BsdTQC	25.21	+12VC	12.12
DATO	0.00	BsdTQD	24.66	m5o2VC	-4.99
DAT1	0.00	Bsd-12V	-11.76	TempC	32.79
PKTO	0.02	Bsd+1o5V	1.52	5o2cC1	0.69

Currently taking data only during non-SAA orbit

CAL pedestal reached a plateau in November 2017

Cosmic Ray Detection

CAL on-orbit performance

SCD on-orbit performance

ISS-CREAM takes the next major step Increases the exposure by an order of magnitude!

- The ISS-CREAM space mission can take the next major step to 10¹⁵ eV, and beyond, limited only by statistics.
- The 3-year goal, 1-year minimum exposure would greatly reduce the statistical uncertainties and extend CREAM measurements to energies beyond any reach possible with balloon flights.

ASTROPHYSICS

Catching cosmic rays where they live

The International Space Station gears up to study high-energy particles in space

By Emily Conover

Science

AAAS

he International Space Station (ISS), which has sometimes struggled to find its scientific purpose, is broadening its role as a cosmic ray observatory. Within a year, two new instruments are slated to join a massive detector, the Alpha Magnetic Spectrometer (AMS), which the station has hosted since 2011. The ISS's perch above Earth's atmosphere is ideal for detecting high-energy particles from space, says astrophysicist Eun-Suk Seo of the University of Maryland, College Park, principal investigator of the Cosmic Ray Energetics and Mass for the International Space Station (ISS-CREAM) experiment. What's more, she notes, launch vehicles already go there regularly. "Why not utilize it?"

The AMS was a gargantuan effort costing \$1.5 billion and requiring more than a decade of planning (*Science*, 22 April 2011, p. 408). The two smaller experiments—the CALorimetric Electron Telescope (CALET), and ISS-CREAM—will measure cosmic rays at energies many times higher than the AMS can reach, at a much lower price tag.

High-energy cosmic rays are scientists' best chance to glimpse what goes on inside exotic objects thought to accelerate them such as exploding stars called supernovae. Ground-based detectors spot cosmic rays indirectly, by observing the showers of other particles they give off on striking the atmosphere. Astrophysicists hope direct measurements in space will give them a more straightforward handle on the energies and types of cosmic ray particles reaching Earth.

Cosmic ray detectors on the ISS

New experiments, perched outside Earth's atmosphere, promise to turn the International Space Station into a well-rounded platform for unlocking the secrets of supernovae and even dark matter.

Whereas the AMS is a general-purpose detector, measuring electrons, protons, nuclei, and antimatter at a range of energies, the new experiments have more focused agendas. The \$33 million CALET—an international project scheduled for launch from the Japan Aerospace Exploration Agency's Tanegashima Space Center on 16 August—sets its sights on high-energy electrons. These quickly lose energy as they travel through space, so any that are detected must come from less than a few thousand light-years away.

"CALET has the possibility of identifying nearby sources that can accelerate electrons," says Thomas Gaisser, an astrophysicist at University of Delaware, Newark, who is not involved with the project. Those sources could include supernova remnants, the highly magnetized, spinning neutron stars called pulsars, or even clumps of dark matter, the mysterious substance that makes up 85% of the matter in the universe.

ISS-CREAM (pronounced "ice cream"), slated for launch by SpaceX in June 2016, will focus on high-energy atomic nuclei, from hydrogen up through iron. Their composition could help reveal the unknown inner workings of supernovae. "We cannot

even agree why stars explode," says Peter Biermann, a theoretical astrophysicist at the Max Planck Institute for Radio Astronomy in Bonn, Germany, who is not involved with the detector. "The cosmic rays are the best signature of whatever happens there."

The new experiments could also shed light on the nature of dark matter. Some models predict that dark matter particles colliding in space should annihilate one another, giving off electrons and antielectrons, or

positrons. The AMS has already confirmed sightings of unexpectedly high numbers of positrons that could be signs of such reactions; CALET can't tell positrons from electrons, so it will look for a surplus in the total

24

Thank you http://cosmicray.umd.edu

