Particle Astrophysics at Zettavolt Energies with Radio Detectors in Low Lunar Orbit

Andres Romero-Wolf
Jet Propulsion Laboratory, California Institute of Technology
April 17, 2021
Zettavolt Askaryan Polarimeter

Opening a new window into the extreme energy universe

Astrophysical sources accelerate particles to extreme energies.

Cosmic rays interact in the lunar regolith

Atomic nuclei deflected by Galactic magnetic fields

A radio detector in low lunar orbit achieves unprecedented sensitivity to the highest energy cosmic rays.

Andrés Romero-Wolfa, Jaime Alvarez-Muñizb, Luis A. Anchordoquic, Douglas Bergmand, Washington Carvalho Jr.e, Austin L. Cummingsf, Peter Gorhamg, Casey J. Handmera, Nate Harveya, John Krizmanich,k, Kurtis Nishimurai, Remy Precheltg, Mary Hall Renoj, Harm Schoorlemmerk, Gary Varnerg, Tonia Ventersk, Stephanie Wissell, Enrique Zasb

aJet Propulsion Laboratory, California Institute of Technology, bIGFAE & Universidade Santiago de Compostela, cLehman College, City University of New York, dUniversity of Utah, eUniversidade do São Paulo, fGran Sasso Science Institute, gUniversity of Hawai‘i at Manoa, hUniversity of Maryland, iUniversity of Iowa, jMax Planck Institute, kNASA Goddard Space Flight Center, lPennsylvania State University,
Low Radio Frequencies Provide Access to Higher Energies

- Frequencies < 300 MHz have wide radio beams with a large range of view angles producing a detectable signal at ultra-high energies.

- Frequencies > 300 MHz are narrowly beamed with a small range of view angles producing a detectable signal.
ZAP - prospects

Antenna array in lunar orbit operating for 2 years can increase the statistics by an order of magnitude with full sky coverage.
ZAP Science – acceleration mechanisms

• Interactions of UHE cosmic rays with photon background (e.g. radio, microwave, IR, optical) result in energy loss during propagation.
• Auger and TA show a clear suppression (20σ significance).
• Increasing mass composition with increasing energy can mean one of two things:
 • Rigidity-dependent maximum energy of nearby sources is limited (running out of steam).
 • Heavier elements are suppressed due to photon fields at the source while lighter elements are not.
 • $E_{\text{max}} \propto Z$
 • $\frac{dE}{dx} \propto A$
• Prediction is that the subdominant proton spectrum is recovered for $E>10^{20.2} \text{ eV}$.

\[
\frac{\Delta E}{E} = 30\% \\
\text{Proton fraction 20%}
\]
ZAP Science – composition at the highest energies

- ZAP is not sensitive to X_{max} (nuclear composition).
- However, it can test for clustering of hot spots as a function of energy.
- Composition is expected to get heavier with increasing energy.
- Clustering of hotspots as a function of energy could identify clusters could reveal sources of light particles at ultra-high energies expected from energy cutoffs due to photon field.
- This finding would be important for prospects of neutrino astronomy at ultra-high energies.

Scattering due to Galactic magnetic field deflections

$$\theta \sim 1^\circ Z \left(\frac{E}{100 \text{ EeV}} \right)^{-1}$$

Adapted from Anchordoqui et al. 2020
ZAP Science – full sky anisotropy studies

- Independent identification the sources of the highest energy cosmic rays and test the mechanism by which the spectrum cuts off.
- Full sky coverage with \(\geq 1000 \) events with \(E \geq 10^{19.6} \) eV

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(f_{\text{sig}})</th>
<th>(\theta)</th>
<th>AGN</th>
<th>SBG</th>
<th>2MRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%</td>
<td>20°, 15°</td>
<td>1240</td>
<td>2,060</td>
<td>1,910</td>
<td>(>5,000)</td>
</tr>
<tr>
<td></td>
<td>15°</td>
<td>920</td>
<td>1,910</td>
<td></td>
<td>4,830</td>
</tr>
<tr>
<td>15%</td>
<td>20°, 15°</td>
<td>680</td>
<td>1,000</td>
<td>870</td>
<td>2,250</td>
</tr>
<tr>
<td></td>
<td>15°</td>
<td>660</td>
<td></td>
<td></td>
<td>2,280</td>
</tr>
<tr>
<td>20%</td>
<td>20°, 15°</td>
<td><650</td>
<td><650</td>
<td><650</td>
<td>1,520</td>
</tr>
<tr>
<td></td>
<td>15°</td>
<td><650</td>
<td><650</td>
<td></td>
<td>1,320</td>
</tr>
</tbody>
</table>
ZAP Science – Channels for detection of superheavy dark matter

SHDM identified >ZeV ν’s and γ’s and directionally correlated with local DM distribution.

Purely electromagnetic showers can be identified via the LPM effect.

Expected to provide order of magnitude improvements in SHDM constraints.

Image credit: new scientist
Detector Concept

SmallSat array of short dipoles (~ 1m)

Top View

1 m

ESPAring

Side View

6 m

6 m

Dipole

Boom

BEACON short dipoles demonstrated Galactic noise limited sensitivity 30 – 80 MHz band.

Sky noise-limited sensitivity of 1 m dipole with impedance transformer.

ANITA heritage of low power digitizers and triggering electronics.

Image credit: E. Oberla

Image credit: ANITA Collaboration
ZAP - Event Reconstruction

Pointing resolution $\sim 10^\circ$ is achievable
It is possible to drive it down further with more channels.

<table>
<thead>
<tr>
<th>Contribution</th>
<th>Allocation</th>
<th>Depends on…</th>
<th>Controlling parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Pointing</td>
<td>3°</td>
<td>• Antenna separation.</td>
<td>• Antenna separation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Signal strength.</td>
<td>• Sensitivity</td>
</tr>
<tr>
<td>Lunar topography</td>
<td>2 – 8°</td>
<td>• RF pointing</td>
<td>• RF pointing (TBD)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Lunar region</td>
<td></td>
</tr>
<tr>
<td>In-plane CR tilt angle</td>
<td>5°</td>
<td>• Askaryan signal spectrum</td>
<td>• RF Sensitivity</td>
</tr>
<tr>
<td>Out of plane CR tilt angle</td>
<td>8°</td>
<td>• Polarization</td>
<td>• RF Sensitivity</td>
</tr>
</tbody>
</table>

Reconstruction will require 3 or 4 antennas in each polarization (9-12 dipoles total).
Baseline separation > 5m needed.

RF Pointing by beamforming

Lunar Topography

Polarization angle resolution

$$\delta \theta \approx \frac{1}{SNR}$$
Planetary Science Application: Detecting Ice in the Permanently Shadowed Regions of Airless Bodies

- Evidence of relatively pure extensive ice deposits in Mercury’s Permanently Shadowed Regions (PSRs).
- Only traces of water ice have been found on the surface of lunar PSRs.
- The Moon could host extensive ice deposits at > 1 m depths.
- UHECRs illuminate subsurface ice!
Planetary Science Application: Detecting Ice in the Permanently Shadowed Regions of Airless Bodies

- Evidence of relatively pure extensive ice deposits in Mercury’s Permanently Shadowed Regions (PSRs).
- Only traces of water ice have been found on the surface of lunar PSRs.
- The Moon could host extensive ice deposits at > 1 m depths.
- UHECRs illuminate subsurface ice!

Image credit: P. Gorham w/ Remcom XFDTD
Outlook and Conclusions

• Lunar detector concept under development.
 • Event clustering simulations at the highest energies.
 • Particle and radio emission propagation models for the Moon.
 • Development of ultra-wide band electrically short dipole.
 • Sensitivity to extensive ice deposits.

• Initial estimates of a low-frequency antenna array in lunar orbit show promising prospects for extremely high energy particles not available to ground arrays.

• ZAP offers a low cost way to search for extensive ice deposits in the permanently shadowed regions of airless bodies.