Ultracompact binaries

Tom Maccarone (Texas Tech University)
Overview

Astronomy, not physics with gravitational waves for these objects

Classes of double compact objects

 Evolutionary scenarios

 Strategies for finding them

 What we know about populations

 Key open questions

What we can hope for in the LISA era and what we need to do to get ready to exploit the LISA data
Classes of double compact objects

- **Red:** not yet seen
- **Roman:** no mass transfer
- **Green:** seen
- **Italic:** mass transferring
- **Blue:** remnant of process

<table>
<thead>
<tr>
<th></th>
<th>WD</th>
<th>NS</th>
<th>BH</th>
</tr>
</thead>
<tbody>
<tr>
<td>WD</td>
<td>AM CVn</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>He WD-WD binaries</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Double CO WD binaries</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R Cor Bor stars</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Type Ia?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NS</td>
<td>UCXBs</td>
<td>Binary pulsars</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Millisecond pulsars with He WD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Short GRBs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ALIGO</td>
<td></td>
</tr>
<tr>
<td>BH</td>
<td>Fast WD orbits</td>
<td>ALIGO</td>
<td>LIGO microlensing</td>
</tr>
<tr>
<td></td>
<td>XMMU J122949.7+075333</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>47 Tuc X9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ingredients & tests of binary population synthesis

- Initial mass function
- Initial mass ratio distribution
- Initial period distribution
- Common envelope evolution
- Stellar winds
- Supernova kicks
- Angular momentum transport in binaries (GWR, circumbinary disks, magnetic braking)

- Disk winds
- Tides
- Accretion disk stability
- Spectral energy distribution
- Observational selection biases
- Triples and other multiples
- Dynamical formation
Expected numbers of source classes: accretors

BHXBs - typically few thousand in Galaxy, but see also B. Tetarenko et al. 2016 -- maybe hundred thousand, number with WD secondaries wildly uncertain

NSXBs - typically $\sim 10^4$ in Galaxy, with \sim half being UCXBs (e.g. van Haaften et al. 2013)

CVs - space density of $\sim 10^{-5}$ pc$^{-3}$ (Pretorius et al. 2007), so few million total, few hundred within 1 kpc - only this number is reasonably constrained from observations

AM CVn - ~ 0.1 times the number of CVs (Roelofs et al. 2007), so few hundred thousand, total, few hundred within 1 kpc
Detached double white dwarfs

Present sample based on searching for He WDs and doing follow-up after

Could easily be double CO WDs, just not easy to find

These would be more likely to be Type Ia progenitors

Brown et al. (2013)
AM CVn stars

He WD-CO WD binaries with mass transfer

About 40 known members of class (Levitan et al 2013), mostly from SDSS, or from short PTF outbursts

Outbursters easiest class to grow, but necessarily will be longer orbital period systems

Newest short period system was X-ray selected from Chandra Galactic Bulge Survey (Wevers et al. 2016)
White dwarf-neutron star binaries with mass transfer

Ultracompact X-ray binaries (UCXBs)

11 clear examples, some additional candidates

Most of the fastest ones are in globular clusters

 Makes it harder to assess whether Pdot,orb “behaves”

Mixture of He, CO WD donors

UV period searches very effective!

Zurek et al. 2009
White dwarf-neutron star binaries without mass transfer

Pulsar timing has found many

These are generally wide binaries, unlikely to be LISA sources

May have other cases of WD-NS binaries without mass transfer that open up with LISA (e.g. pre-ultracompact X-ray binaries)

Either we find many of these or we learn about the initial periods of UCXBs
Double neutron star binaries

J0737 is a marginal test case, others probably too wide, 14 total objects

Key goals here:

- Better statistics on populations, compare with ALIGO
- Understand pulsar beaming better (O’Shaughnessy & Kim 2010)
- Compare radio, X-ray beams (it’s very hard to X-ray-select pulsars), requires X-ray timing capability!
Neutron star-black hole binaries

None yet known

Unclear if they’re rare

Pulsars in these binaries could be highly accelerated, so even pulsar binaries might be more easily detected with LISA first, then electromagnetically

1 degree error boxes line up well with FOV of radio telescopes at low frequency, STROBE-X collimator

Searches for steep spectrum radio sources without timing signals may be valuable in the meantime (Bhakta et al. 2017; Chris Britt et al, in prep)
BH-WD binaries: extragalactic

Strongest case, XMMU J122939.7+075333 in NGC 4472

Globular cluster persistent ULX (Maccarone et al. 2007)

Strong [O III] (Zepf et al. 2008), no other lines in optical

Variability consistent with just changing absorption

Steele et al. 2014
Black hole-white dwarf binaries: Galactic

One strong case, 47 Tuc X-9 (Miller-Jones et al. 2014; Bahramian et al. 2016)

Radio was key identifier, then showed 28 minute period, no H nor He

Hard (Gamma~1) X-ray spectrum: bremsstrahlung emission due to higher $<Z>$ of accreted gas?

Expect ~1 per cluster based on the discoveries to date, going to ~1 hr periods

Spectrum from Knigge et al. (2008); re-interpreted in Miller-Jones, Bahramian
Double black holes

Right now, serious constraints only from LIGO

Microlensing may allow detections (Eilbott et al. 2016)

Rapid sweep-through LISA band allowing aLIGO follow-up (Sesana 2017)

Would be detectable out to Virgo Cluster distances (Kremer et al. 2018; Benacquista Amaro-Seoane, TJM, in prep)

Standard siren distances

Proper motions from NGVLA

6D probes of dark matter potentials!
Learning from LISA I: Do we understand period derivatives?

Some short period XRBs have Pdot,orb orders of magnitude larger than expected from GWR

Tidal effects, especially in eccentric binaries, even when detached (e.g. Stroer et al. 2005; Valsecchi et al. 2012)

Disk instabilities and wind mass loss variations

Circumbinary disks (see also Muno & Mauerhan 2006)

Gonzalez-Hernandez et al. 2012, XTEJ118+480
Getting ready for LISA

X-ray surveys

Radial velocity curves/photometric orbital modulation curves: understand stability of periods for AM CVn systems

High cadence LSST data!

Accelerations within globular clusters, and progress toward testing IMBH models -- presumes we have GAIA distances ahead of time

 Should be able to separate the GWR acceleration from the cluster acceleration

JWST -- look for mid-IR circumbinary disks around test binaries
Conclusions

Studies of double compact objects are in their infancy

LISA discoveries of compact binaries will be evolving slowly enough for electromagnetic follow-up

These will be useful more for doing astronomy with gravitational waves than for doing general relativity with compact binaries

- Binary evolution, common envelopes, kicks, etc.

- Probing mass distributions in globular clusters and galaxy clusters