Advanced Energetic Pair Telescope for Medium-Energy Gamma-Ray Polarimetry

Stanley D. Hunter
NASA/GSFC. Code 661

For the AdEPT team:
Georgia De Nolfo, Andrei Hanu,
John Krizmanic, Floyd Stecker,
Andrey Timokhin, Tonia Venters
Gerardo Depaole, Lorenzo Iparraguirre
Francesco Longo

American Physical Society,
Baltimore, MD

Hunter, et al., Astroparticle Physics, 59, 18-28 (2014)
Gamma-Ray Workshop

• Future Space-Based Gamma-Ray Observatories
 – NASA/GSFC, Feb 5-7, 2015

• Main themes for future gamma-ray missions
 – Nuclear Lines and Polarization

• AdEPT instrument and mission
 – Optimized for angular resolution and polarization
 – Mature mission and instrument concept
 • GSFC IDL/MDL runs
 • Viable Explorer mission
AdEPT Science, 5-200 MeV

- AdEPT will reveal the geometry of the most energetic accelerators in the Universe
- Explore fundamental processes of particle acceleration in active astrophysical objects
 - Pulsars, pulsar nebulae, supernova remnants, active galactic nuclei, magnetars, accreting binaries, gamma-ray bursts, ...
- Map the transition from electron to hadronic processes in the Galactic diffuse emission
- Probe the universe for exotic processes
 - Dark matter
 - Lorentz invariance violation
AdEPT Design Philosophy

• Optimize for angular resolution
 - Angular resolution of pair telescope limited by nuclear recoil, "Kinematic Limit"

• Optimize for polarization sensitivity
 - Modulation factor, λ, decreases exponentially with thickness of tracking medium above ~ 1 mRL
 $$\sigma(\Psi_+) = \frac{\sigma_0}{2\pi} [1 + P\lambda \cos^2(\Psi_+ - \Psi_0)]$$
 - Measure e- and e+ directions in $\lesssim 1$ mRL
 - $\sim 100 \, \mu$m of Si, ~ 8 cm of Ar at 1.5 atm

AdEPT Angular Resolution

- Continuous, low density, conversion and tracking medium
 - \(~5 \text{ mg/cm}^3\) \textit{i.e. a Gaseous medium}
- Angular resolution better than twice the Kinematic Limit up to \(~200 \text{ MeV}\)
- Low density enables detection of Triplet interactions
 - Low-energy angular resolution limited by spatial resolution, better than kinematic limit
 - Enhanced polarization sensitivity

AdEPT is a Viable Gaseous G-ray Polarimeter!

- Baseline design studied in GSFC IDL/MDL
- $2 \times 2 \times 2$ array of $1 \, \text{m}^3$ 3-DTI modules
 - A_{geom}: $4 \, \text{m}^2$, ~40,000 channels
 - Ar (1100 torr) + CS$_2$ (40 torr), 25$^\circ$ C
- Pressure vessel: Al, 4 mm thick, ~300 cm diameter, ~530 kg
- Instrument power: ~500 W, mass: ~320 kg w/o s/c, pv
- Spacecraft: zenith pointed, 3-axis stabilized, scanning mode
- Orbit: near equatorial, ~550 km altitude
- Athena launch vehicle
- Fits within mission constraints: Mass, power, & cost
AdEPT Baseline Performance

Fermi-LAT front, P7SOURCE_V6 (FSSC)

EGRET, Thompson, et al. (1993)

AdEPT, 8 m3 vol Ar+CS$_2$ at 1.5 atm

Effective Area (cm2)

Continuum Sensitivity (MeV cm2 s$^{-1}$)

Minimum Detectable Polarization (%)

$F_{egb} = 2.7 \times 10^{-3} (E/1 \text{ MeV})^{-2.1}$

3σ significance, $T_{obs} = 10^6$ s, and $\Delta E = E$.

No correction for inefficiencies in track recognition

$\lambda = 0.35$
AdEPT Instrument Development

• 2015-18 ROSES-APRA
 – 50 x 50 x 100 cm³ AdEPT prototype
 • Multi-core processor to discriminate gamma-rays from background
 – Determine gamma-ray direction, energy, polarization, and time of arrival
 • Large area MWD integration
 • FEE ASIC
 – Calibrate at accelerator with polarized gamma rays, 5 - ~90 MeV
 • Determine electron energy from Coulomb scattering
 • Measure angular resolution
 • Polarization sensitivity

• Future NASA mission!
3-Dimensional Track Imager (3-DTI)

- **AdEPT Enabling Technology**
 - Large-volume gas **time projection chamber (TPC)**
 - Low density, homogenous, 100% active particle tracking
 - Thermal diffusion achieved with negative ion drift
 - **2-D readout**, 2-D micro-well detector (MWD) + GEM
 - Active detector, 0.4 mm pitch
 - GEM provides additional gain lost to negative ion drift
 - Scalable to large area

19 June 2014 AdEPT Gamma Ray Polarimeter
Electron Tracking in 3-DTI

X-Z, & Y-Z projections of single electrons from 90Sr in Ar + CS$_2$ with 0.4 mm resolution

X-Z projection of 6.129 MeV gamma interaction in 80% P-10 + 20% CS$_2$