

The International context

E. Bozzo University of Geneva

AAS - 2024/01/09

NASA – ESA ties: lesson learned

- ESA-NASA collaborations summary of lesson learned:
 - International participation is (almost) always allowed in calls for missions but risks have to be costed
 - Different mission development phases: unmatched internal procedures (e.g. geo-return)
 - Back timing issues (e.g. THESEUS M7)
- Direct inter-agency exchanges leads to effective steps forward (e.g. Athena, LISA, ...)
- Direct EU member states participation into NASA-led projects can work efficiently (single I/F toward EU usually favoured)
 - Explorer schedule more challenging, SMEX & MIDEX easier (e.g. IXPE, Gamow)
 - (X-ray) Probes: STROBE-X, LEM

(LISTS NOT EXHAUSTIVE!)

THESEUS Transient High Energy Sky and Early Universe Surveyor

http://www.isdc.unige.ch/theseus

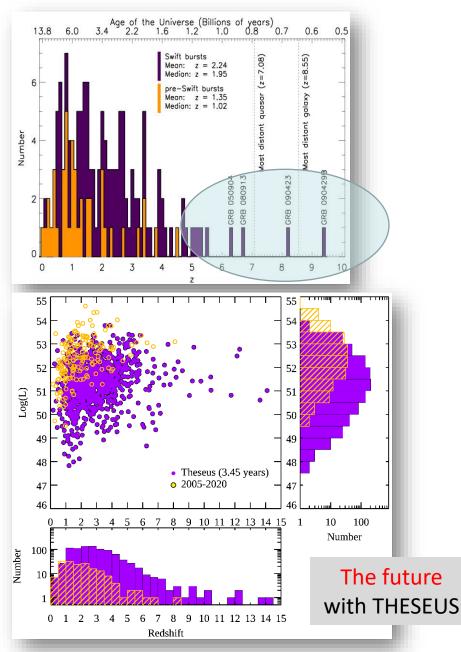
The ESA Cosmic Vision Programme

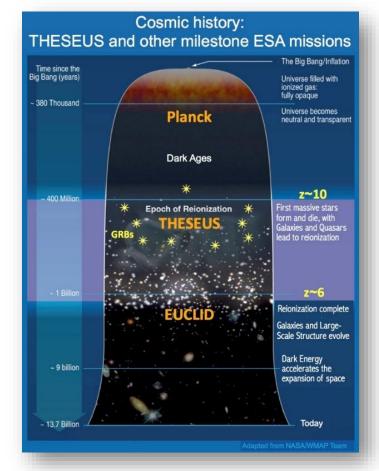
- M1: Solar Orbiter (solar astrophysics, 2018)
- M2: Euclid (cosmology, 2021)
- L1: JUICE (exploration of Jupiter system, 2022)
- S1: CHEOPS (exoplanets, 2018)
- M3: PLATO (exoplanets, 2026)
- L2: ATHENA (X-ray observatory, cosmology, 2037?)
- L3: LISA (gravitational wave observatory, 2037?)
- M4: ARIEL (exoplanets, 2028)
- S2: SMILE (solar wind <-> magneto/ionosphere)
- F1: Comet Interceptor
- M5: Envision (THESEUS M5 not down-selected in 2021)
- M7: THESEUS, M-Matisse, Plasma Observatory (down selection in 2026)

Event	Date or duration	Note
Start of phase 0	Q1 2023	
Mission selection	2026	At the end of the Phase A
Mission adoption	2029	At the end of the Phase B1
Launch	By 2037	Will depend on the mission
Nominal in-orbit operations	Typically ~3 years	Operation costs must be included in the
		ESA CaC

Programmatics

- THESEUS first proposed for the M5 call in 2017, successfully completed a phase 0/A study but not down-selected in 2022 (Vs. EnVision), although declared compelling and fully feasible within available boundaries.
- THESEUS was reproposed for the M7 call in 2021 and currently in phase A. NASA participation for this call originally explored.
- THESEUS remains largely unchanged compared to the consolidated M5 design, with rearranged and extended contributions to several ESA member states.

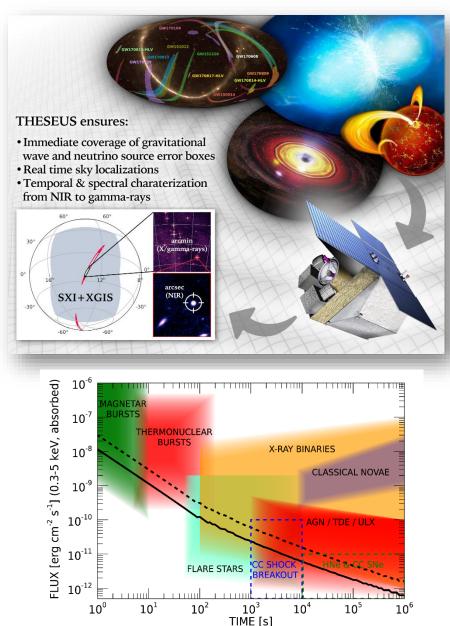

THESEUS Core Science is based on two pillars:

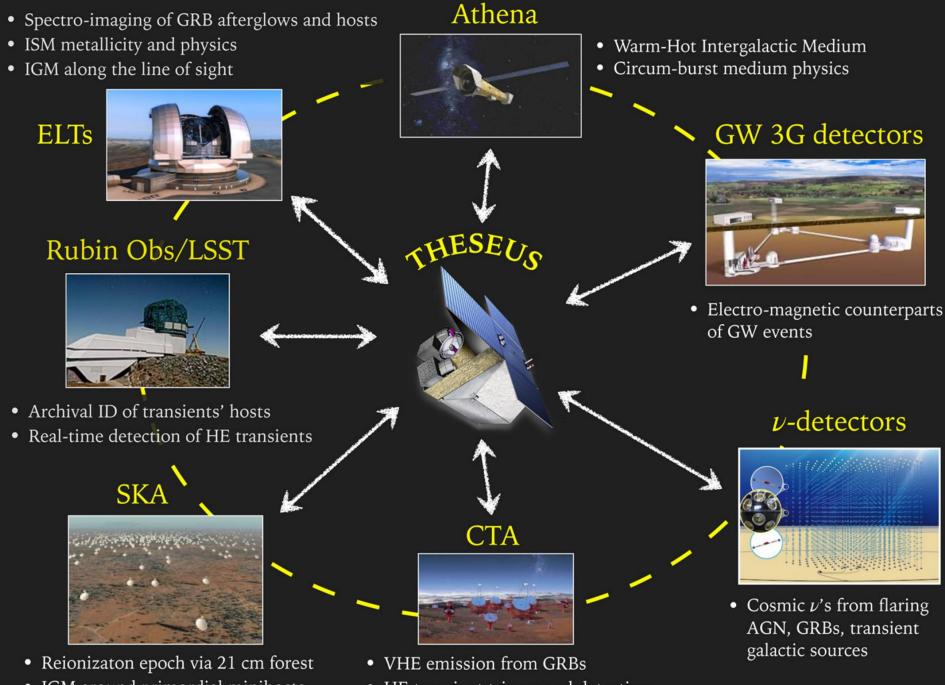

- probe the physical properties of the early Universe, by discovering and exploiting the population of high redshift GRBs.
- provide an unprecedented deep monitoring of the soft X-ray transient Universe, providing a fundamental contribution to multi-messenger and time domain astrophysics in the >2030s (synergy with aLIGO/aVirgo, eLISA, ET, Km3NET and EM facilities e.g., LSST, E-ELT, SKA, CTA, ATHENA).

• THESEUS Observatory Science includes:

- study of thousands of faint to bright X-ray sources by exploiting the simultaneous availability of broad band X-ray and NIR observations
- provide a flexible follow-up observatory for fast transient events with multi-wavelength ToO capabilities and guest-observer programmes.

Shedding light on the early Universe with GRBs

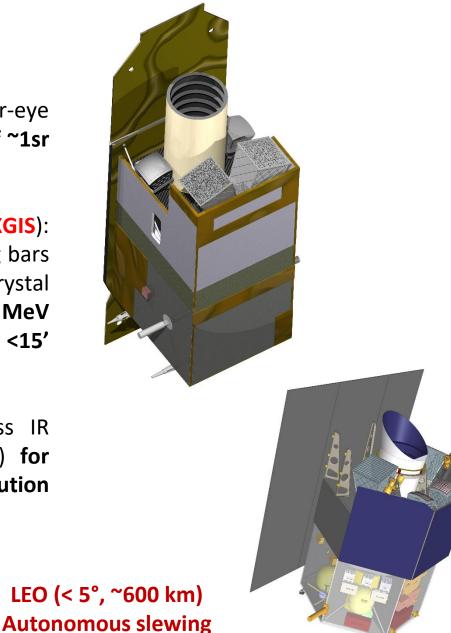


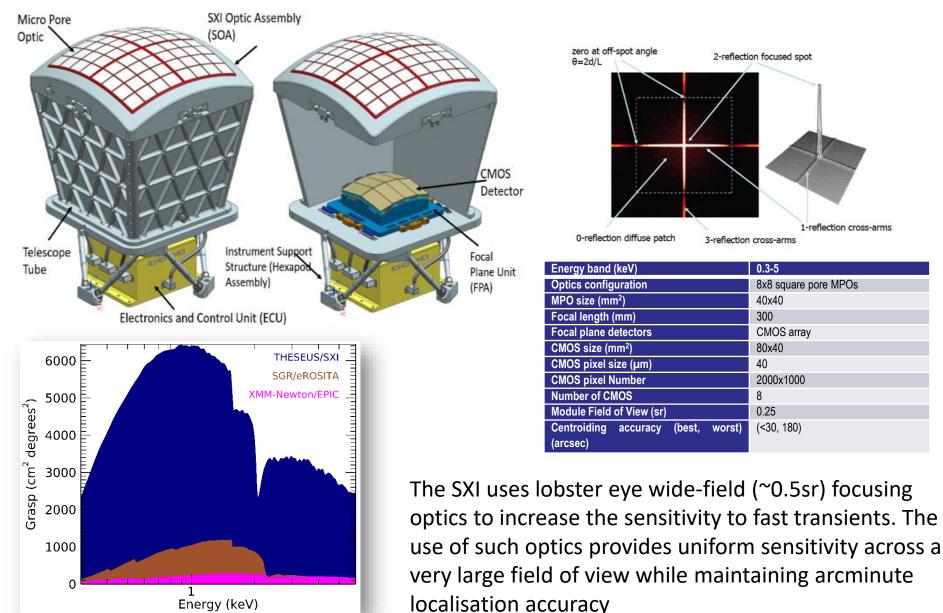


GRBs are unique and powerful tools for investigating the early Universe. They can be found at very high redshifts (>9-10) and provide multiple powerful probes of early star formation, metal-enrichment and galaxy evolution, and the reionization history of the IGM.

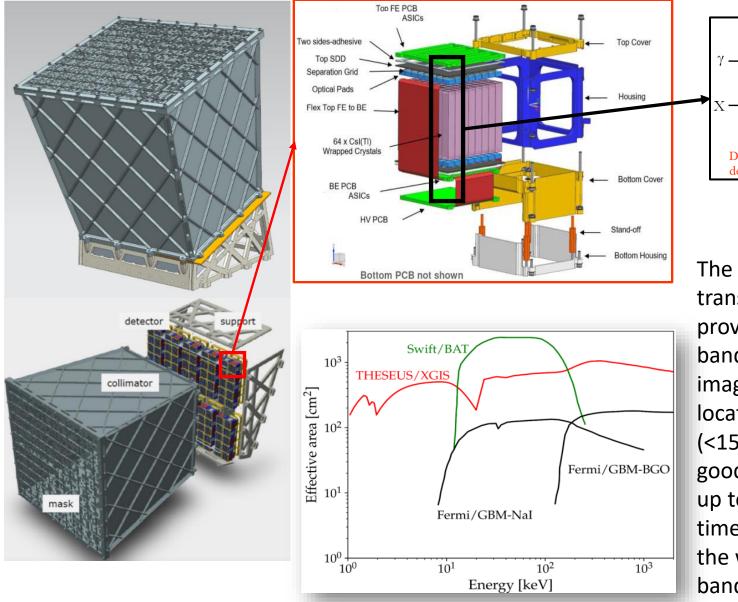
Exploring the multi-messenger transient sky

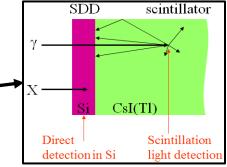
- Locate and identify the electromagnetic counterparts to sources of gravitational radiation and neutrinos, routinely detected in the '30s by aLIGO/aVirgo, eLISA, ET, or Km3NET;
- Provide accurate (~1") high-energy transients for follow-up with nextgeneration optical-NIR (E-ELT, JWST if still operating), radio (SKA), X-rays (ATHENA), TeV (CTA) telescopes; synergy with LSST
- Provide a fundamental step forward in the comprehension of the physics of various classes of transients and fill the present gap in the discovery space of new classes of transients events



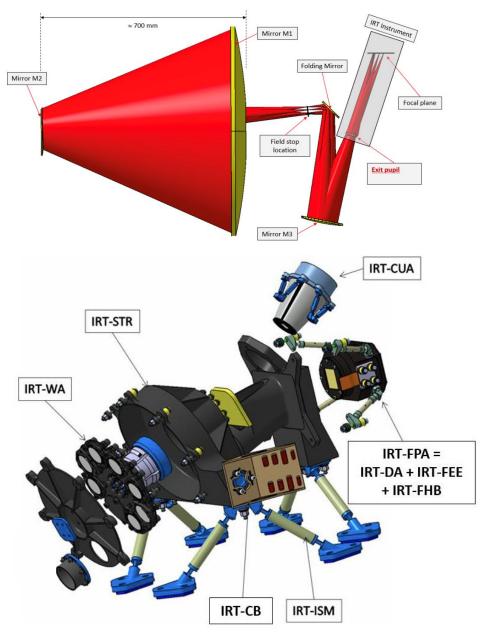

- IGM around primordial minihosts
- HE transient trigger and detection

THESEUS mission concept


- Soft X-ray Imager (SXI): a set of 2 lobster-eye telescopes (0.3 - 5 keV band, total FOV of ~1sr with source location accuracy <1')</p>
- X-Gamma rays Imaging Spectrometer (XGIS): 2 coded-mask X-gamma ray cameras using bars of Silicon diodes coupled with CsI crystal scintillators observing in (2 keV – 10 MeV band, FOV of ~2-4 sr overlapping the SXI, <15' source location accuracy)
- InfraRed Telescope (IRT): a 0.7m class IR telescope (0.7 – 1.8 μm, 15'x15' FOV) for imaging and moderate resolution spectroscopy capabilities (R~400)



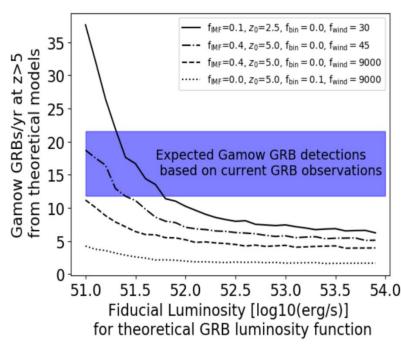
The Soft X-ray Imager (SXI)


The X-Gamma-ray imaging spectrometer

The XGIS is a GRB and transients monitor providing wide energy band (2 keV-10 MeV), imaging capabilities, location accuracy (<15), FoV up to 4π , good energy resolution up to 30 keV, and ms time resolution over the whole energy band.

The InfraRed Telescope (IRT)

IRT characteristic	Value
Photometric wavelength range	0.7-1.8 mm
Spectroscopic wavelength range	0.8-1.6 mm
Photometric field of view	15 x 15 arcmin (goal: 17' x 20')
Pixel size/scale	18 mm / 0.6 arcsec
Required Photometric sensitivity (AB, in150 s,	l: 20.9 (goal: 21.3)
SNR=5) for each implemented filter	Z: 20.7 (goal 21.2)
	Y: 20.4 (goal: 20.8)
	J: 20.7 (goal: 21.1)
	H: 20.8 (goal: 21.1)
Expected photo-z accuracy	< 10%
Astrometric accuracy	< 5 arcsec in near-real time
	< 1 arcsec after ground processing
Spectroscopic field of view	2 x 2 arcmin
Resolving Power at 1.1 mm	> 400
Required Spectroscopic sensitivity (AB, H	17.5 (goal: 19)
filter, 1800 s, SNR=3 for each spectral bin)	

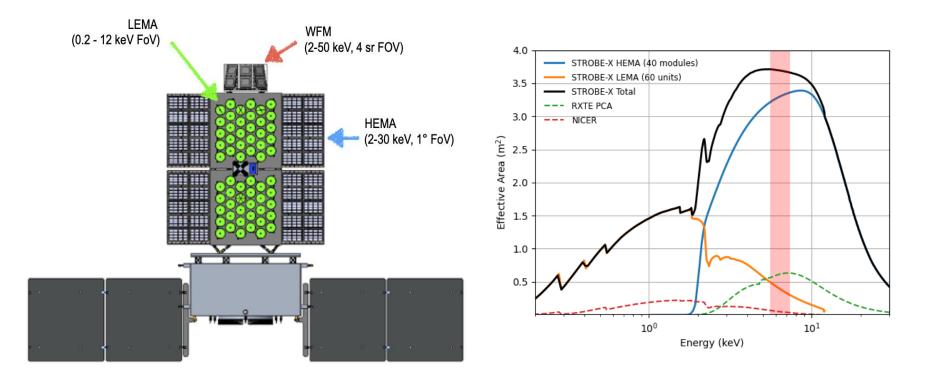

The IRT detects, identifies and measures the redshift of GRB afterglows discovered by SXI and XGIS, especially those at high redshift (z>6).

It is a 70 cm Korsch telescope, implementing two separated fields of view, one for photometry (15' x 15') and one for spectroscopy (2' x 2').

Gamow

The Gamow Explorer: A gamma-ray burst observatory to study the high redshift universe and enable multi-messenger astrophysics

N.E. White*a, F.E. Bauer^b, W. Baumgartner^c, M. Bautz^d, E. Berger^e, S. B. Cenko^f, T.-C. Chang^g, A. Falcone^h, H. Fausey^a, C. Feldmanⁱ, D. Fox^h, O. Fox^j, A. Fruchter^j, C. Fryer^k, G. Ghirlanda^l, K. Gorski^g, K. Grant^d, S. Guiriec^a, M. Hart^g, D. Hartmann^m, J. Hennawiⁿ, D. A. Kann^o, D. Kaplan^p, J. A. Kennea^h, D. Kocevski^c, C. Kouveliotou^a, C. Lawrence^g, A. J. Levan^q, A. Lidz^r, A. Lien^s, T.B. Littenberg^c, L. Mas-Ribas^g, M. Moss^a, P. O'Brienⁱ, J. O'Meara^t, D.M. Palmer^k, D. Pasham^d, J. Racusin^f, R. Remillard^d, O.J. Roberts^{cu}, P. Roming^v, M. Rud^g, R. Salvaterra^x, R. Sambruna^f, M. Seiffert^g, G. Sun^y, N. R. Tanvirⁱ, R. Terrile^g, N. Thomas^c, A. van der Horst^a, W.T. Verstrand^k, P. Willems^g, C. Wilson-Hodge^e, E.T. Young^u, L. Amati^z, E. Bozzo^{aa}, O.Ł. Karczewski^{ab}, C. Hernandez-Monteagudoa^{ac}, R. Rebolo Lopez^{ac}, R. Genova-Santos^{ac}, J.A. Rubino-Martin^{ac}, J. Granot^{ad}, P. Bemiamini^{ad}, R. Gil^{ad}, E. Burns^{ae}


Two on-board instruments:

LEXT - Lobster Eye Telescope - for the detection and localization of (Cosmological) GRBs in the soft X-rays

PIRT - Photo-z InfraRed Telescope – for the on-board redshift determination (only photometry, spectra from the ground with large telescopes)

STROBE-X

- NASA Probe proposal submitted
- EU participation consolidated for the proposal stage within allowed boundaries.
- Feedback expected in February, but down-selection of 1 X-ray and 1 IR probe not earlier than 08.2024.

