

M

FOUNDATION

Updates from Simons **Observatory** (SO)

Remington G. Gerras University of Southern California AAS 243, New Orleans, LA

WCU WEST CHESTER

Overview

- Simons Observatory (SO) Introduction
- SO on-site updates
 - Large Aperture Telescope and Receiver (LAT/LATR)
 - Small Aperture Telescopes (SATs)
- SO pipeline updates
- SO Timeline and what's next

Simons Observatory (SO)

 Atop Cerro Toco, Atacama Desert, Chile

 5200m above sea-level!

 Site as of 10/2023

SO Telescopes

Large Aperture Telescope (LAT)

- 6m crossed-dragone telescope
- Large area scan strategy with high resolution (~arc minute)
- 6 frequency bands: (27, 39, 90, 150, 220, 280) GHz
- 30k TES detectors

- Refractive telescopes with 42cm aperture
- Deep scan with ~degree resolution
- 6 frequency bands, same as LAT
 - Split amongst 3 SATs
- 30k TES detectors total

Overview of SO

- Studies anisotropies in CMB
 - Science Goals:
 - Primordial B-modes, with tensor-to-scalar ratio, r < 0.01, σ(r) < 0.003
 - Neutrino Mass Hierarchy, Neff,
 + many others! (SO forecast paper)
- Nominally 4 telescopes sensitive to 6 frequency bands to observe extremely faint signal and to remove sources of galactic noise
 - LAT focuses on high ł science
 - 3x SATs focus on primordial B-modes (low l)

Large Aperture Telescope (LAT)

SPI vertex

Credit: Mark Devlin

Large Aperture Telescope (LAT)

- Platform on site 06/2023
- Cryogenic Receiver installed 08/2023
 - Dark Tests performed last quarter of 2023
 - 2/7 optics tubes installed
- Mirrors to be installed midway through 2024
 - 7/7 optics tubes installed by 02/2024

15 m

Small Aperture Telescope - Middle Frequency 1, 2 and Ultra High Frequency (SAT-MF1, MF2, UHF)

Credit: Adrian Lee

SAT-MF1

- Finished in-lab testing at UCSD
- Installed on Platform (08/2023)
- On-sky testing on-going

SAT-MF2

- Finished in-lab testing at Princeton
- Installed on Platform (11/2023)
- Preparing for on-sky tests

SAT-UHF

- Finished in-lab testing at Berkeley
- Shipped to Chile (12/2023)
- Begin unpacking and installation on platform
 - First quarter of 2024

SO Pipeline Status

- SO makes use of multiple publicly available data processing pipelines
 - o <u>so-lenspipe</u>, <u>BBPower</u>
- Large-scale B-mode signal pipeline validated using recent instrument data

The Simons Observatory: pipeline comparison and validation for large-scale *B*-modes

Kevin Wolz^{1,2}*, Susanna Azzoni^{3,4}, Carlos Hervías-Caimapo^{5,6}, Josquin Errard⁷, Nicoletta Krachmalnicoff^{1,2,8}, David Alonso³, Carlo Baccigalupi^{1,2,8}, Antón Baleato Lizancos^{9,10}, Michael L. Brown¹¹, Erminia Calabrese¹², Jens Chluba¹¹, Jo Dunkley^{17,18}, Giulio Fabbian^{12,13}, Nicholas Galitzki¹⁴, Baptiste Jost^{7,15}, Magdy Morshed⁷, and Federico Nati¹⁶

- LAT pipelines are being developed and tested on ACT data
 - DR6 Gravitational Lensing Map and Cosmological Parameters
 - Mitigating the impact of extragalactic foregrounds for the DR6 CMB lensing analysis

Future of SO

- SO:UK (United Kingdom), SO:JP (Japan)
 - 3 additional SATs (2x United Kingdom, 1x Japan)
 - 30k additional detectors
- Advanced SO (ASO)
 - Fully populate LAT Receiver with 6 additional optics tubes and 30k additional detectors
 - Additional 5 year observation time
 - Infrastructure upgrades to increase power efficiency via photovoltaic array

(Quick) History of the Universe

 Density perturbations in very early universe are *inflated* to cosmic scales
 These seed cosmic structure we see today
 Density perturbations imprinted in the cosmic microwave background (CMB)

Information from the CMB

- CMB is mostly uniform in temperature, but there are anisotropies. *Why?*
- Theory of inflation:
 - Temperature anisotropies caused by density perturbations
 - Polarization anisotropies as well!
- Study the CMB statistics via power spectra
 - In frequency and angular distance spaces

SO-Nominal Key Science Goals

	Current ^b	SO-Nomin	al (2022-27)	Method ^d
		Baseline	Goal	
Primordial				
perturbations (§2.1)				
$r (A_L = 0.5)$	0.03	0.003	0.002 ^e	BB + external delensing
n_s	0.004	0.002	0.002	TT/TE/EE
$e^{-2\tau} \mathcal{P}(k=0.2/\mathrm{Mpc})$	3%	0.5%	0.4%	TT/TE/EE
$f_{ m NL}^{ m local}$	5	3	1	$\kappa\kappa \times LSST-LSS$
		2	1	kSZ + LSST-LSS
Relativistic species (§2.2)				
$N_{ m eff}$	0.2	0.07	0.05	TT/TE/EE + $\kappa\kappa$
Neutrino mass (§2.3)				
Σm_{ν} (eV, $\sigma(\tau) = 0.01$)	0.1	0.04	0.03	$\kappa\kappa$ + DESI-BAO
		0.04	0.03	$tSZ-N \times LSST-WL$
Σm_{ν} (eV, $\sigma(\tau) = 0.002$)		0.03 ^f	0.02	$\kappa\kappa$ + DESI-BAO + LB
		0.03	0.02	$tSZ-N \times LSST-WL + LB$
Beyond standard				
model (§2.4)				
$\sigma_8(z=1-2)$	7%	2%	1%	$\kappa\kappa$ + LSST-LSS
		2%	1%	$tSZ-N \times LSST-WL$
H_0 (ACDM)	0.5	0.4	0.3	TT/TE/EE + $\kappa\kappa$
Galaxy evolution (§2.5)				
$\eta_{ m feedback}$	50-100%	3%	2%	kSZ + tSZ + DESI
$p_{ m nt}$	50-100%	8%	5%	kSZ + tSZ + DESI
Reionization (§2.6)				
Δz	1.4	0.4	0.3	TT (kSZ)

From Astro2020 talk (A. Lee, S. Staggs)

Render of site to Current site status

From Mark Devlin; SO

Advanced Simons Observatory (ASO)

- Doubles mapping speed and increases number of detectors
 - Fully populate LAT Receiver (from 7/13 to 13/13 Optics Tubes, additional 30k detectors)
- Adds 5 years of observations

	SO-Nominal	SO-Enhanced
	(Goal)	(Goal)
Lensing and SZ (LAT)		
Minimal neutrino mass detection $(\Sigma m_{\nu}=0.06 \text{ eV})^{a}$	3σ	4σ
Lensing detection (polarization-only)	$160\sigma (110\sigma)$	$220\sigma (180\sigma)$
Number of SZ clusters	20000	33000
Kinematic SZ detection (DESI cross-correlation)	190σ	240σ
Measurement of Optical Depth from kSZ, $\sigma(\tau)^{b}$	0.007	0.003
Primordial polarization (SATs)		
Tensor-to-scalar ratio	$\sigma(r) = 0.002$	$\sigma(r) = 0.001^{\rm c}$

SO Pipeline Status

• Validated analysis pipeline for B-mode search based on SAT instrumentation data

• LAT data analysis pipelines have been tested on recent ACT data release (DR6)