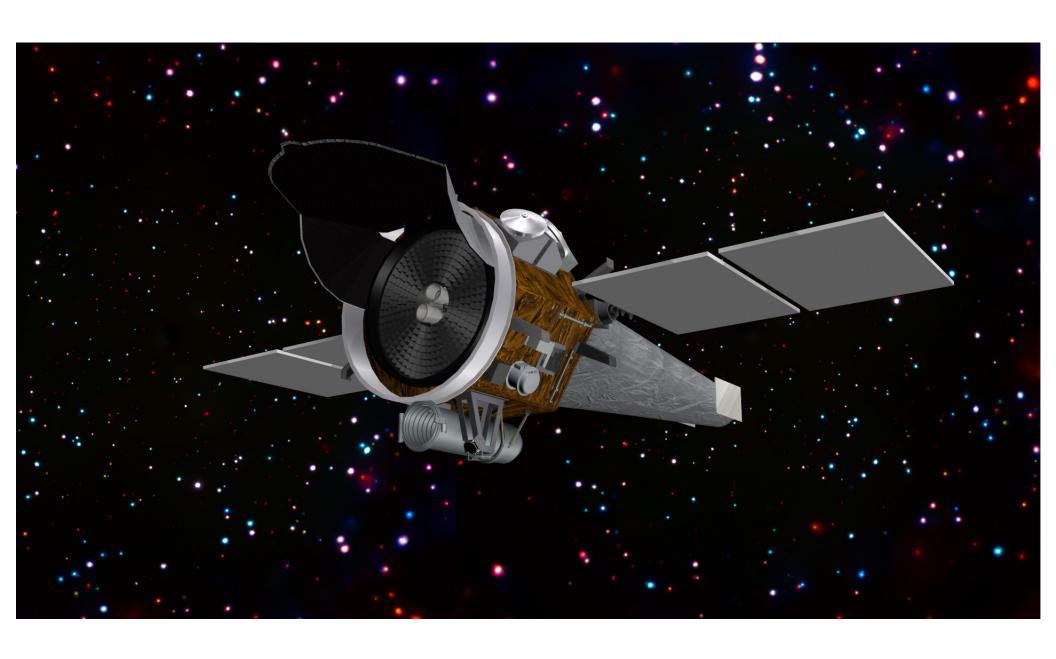
The Proposed STAR-X Mission: Studying the Fast, Furious and Forming Universe

Ann Hornschemeier Cardiff


Deputy PI


NASA Goddard Space Flight Center

http://star-x.xraydeep.org/

Science Team

Survey and Time-domain Astrophysical Research eXplorer

Will Zhang

Ann Hornschemeier

Antara Basu-Zych

Mark Bautz

Niel Brandt

Ed Cackett

Brad Cenko

Kai-Wing Chan

Francesca Civano

Joel Coley

Maya Fishbach

Brian Fleming

Ryan Foley

Wen-fai Fong

Kevin France

Roberto Gilli

Catherine Grant

Daryl Haggard

Edmund Hodges-Kluck Vicky Kalogera

Erin Kara

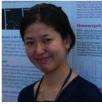
Craig Markwardt

Takashi Okajima

Matteo Perri

Sebastian Pineda

Simonetta Puccetti


Paolo Tozzi

Kim Weaver

Dan Wik

Mihoko Yukita

Andreas Zezas

Exploring the Fast, Furious, and Forming Universe

The STAR-X Science Story

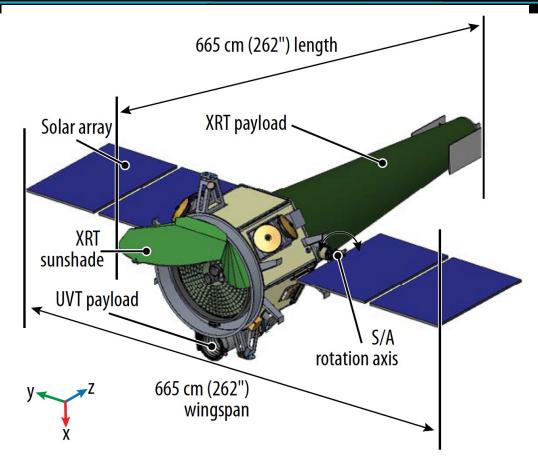
The FAST: Locally rare, brief events have an outsized impact on the Universe.

The heavy elements needed for life are synthesized in and dispersed by supernovae and neutron star mergers. Similarly, a single stellar superflare can evaporate an ocean or catalyze prebiotic pathways. The STAR-X wide field UV/X-ray design and fast and flexible operations captures these events.

The FURIOUS: Black holes grow extremely rapidly at early times in the Universe and are critical to galaxy evolution.

STAR-X will uniquely probe the physics of rapid accretion that allowed massive black holes to grow so quickly in the early Universe. STAR-X will catch transient, extreme black hole feeding events, such as TDEs, where entire stars are disrupted.

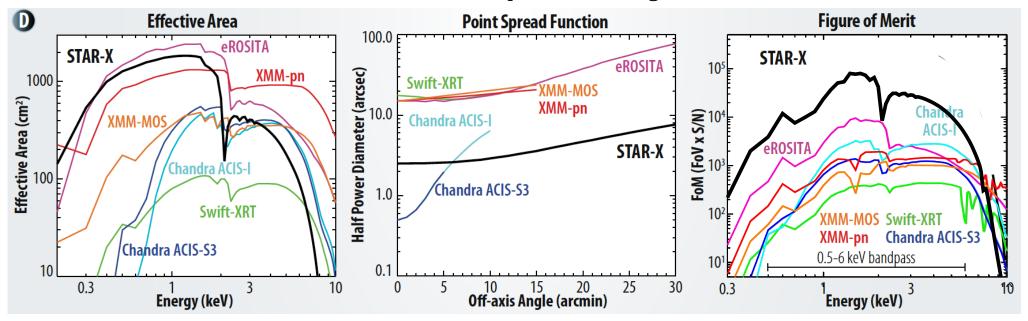
The FORMING: Distant galaxy clusters provide maximal leverage in evolutionary studies of structure formation and chemical enrichment.



STAR-X will conduct deep surveys and discover the elusive diffuse emission from the largest bound objects in the Universe (clusters of galaxies), shortly after their birth. STAR-X's combination of excellent imaging and low particle background (due to orbit choice) makes this possible in a way that no other mission can.

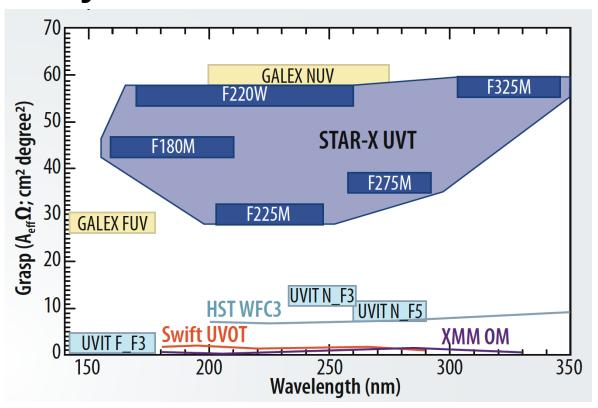
What is STAR-X?

- Three largely independent subsystems: XRT, UVT, and SC
- Each independently built and qualified
 - XRT by GSFC+MIT
 - UVT by Univ. of Colorado
 - SC by Ball Aerospace
- Easy integration and testing: "plug and play"
 - Obs. Integration and testing by Ball Aerospace



Survey and Time-domain Astrophysical Research eXplorer

Key Features of the X-ray Telescope

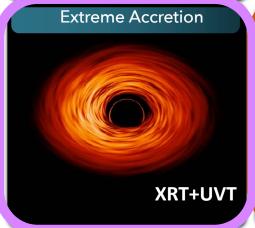

- Excellent PSF: 2.5" on-axis, 8" 0.5-deg off-axis.
- Large FOV: 1 deg².
- Large effective area: >1,800 cm² at 1 keV.
- Low particle background.

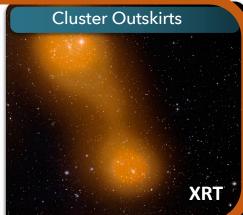
Ann Hornschemeier NASA Goddard Space Flight Center

Key Features of the UV Telescope

- Excellent PSF: 4" on- and off-axis.
- Large FOV: 1.0 deg².
- Good effective area: 25 55 cm².
- Five filters
 - 180 nm
 - 220 nm
 - 225 nm
 - 275 nm
 - 325 nm

STAR-X Science: Eight science objectives

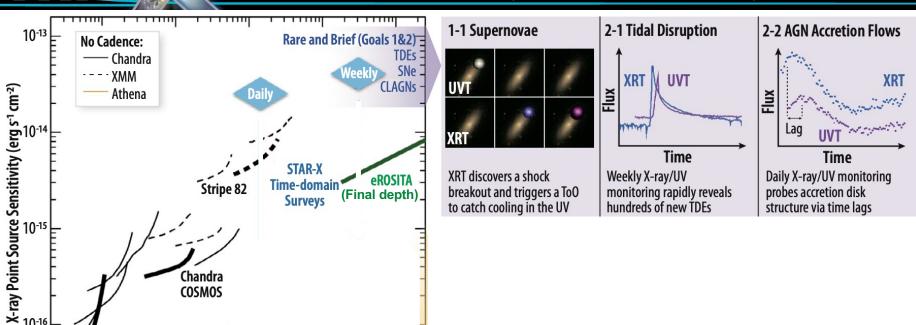

Survey and Time-domain Astrophysical Research eXplorer



CDF-S

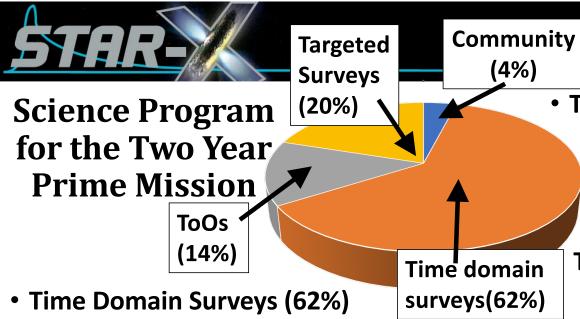
0.1

Athena


10

Area (deg²)

100


Survey Strategy

Survey and Time-domain Astrophysical Research eXplorer

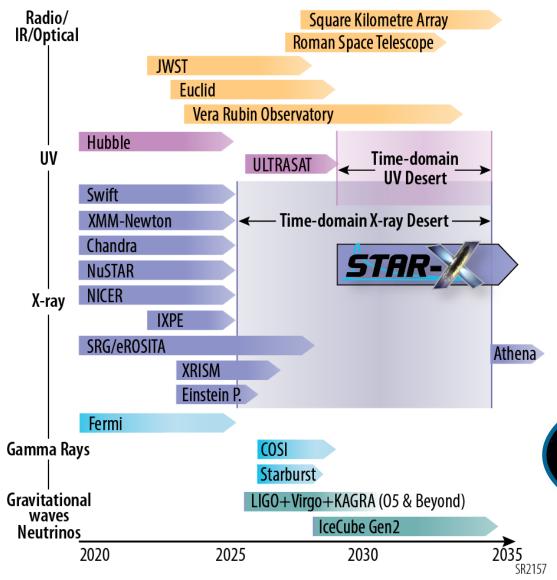
STAR-X finds rare and brief events and rare and faint high-z objects
Final depths: MEDIUM: 3x10⁻¹⁶ cgs over 300 deg² (~100 Chandra COSMOS fields),
DEEP: 7x10⁻¹⁷ cgs over 12 deg²

1000

• Deep survey: Rubin deep drilling fields

- 12 deg², Daily Cadence, 1500 s
- Optimized for rapid transients and AGN variability
- 1x10⁻¹⁴cgs (X-ray) and 22.2 mag (UV, F180M) and 23.3 mag (UV, F275M)
- Medium survey: Stripe 82 + Subaru fields, & Rubin deep drilling fields
 - 300 deg², Weekly Cadence, 500 s
 - Optimized for TDEs
 - 3x10⁻¹⁴cgs (X-ray) and 21.9 mag (UV, F180M)

nd Time-domain Astrophysical Research eXplorer


- Targets of Opportunity (14%)
 - Young supernovae
 - GW X-ray/UV counterparts
 - GW source late-time follow-up
 - Tidal-disruption events

Targeted Surveys (20%)

- 10 nearby galaxies
- 9 low-mass, planet-bearing stars
- 20 high-z SZ-detected clusters
- 20 nearby clusters

• Community Program (4%, 1.8 Ms)

 Impromptu requests from the broad community

Why STAR-X and Why Now?

STAR-X fills the gap in X-ray and UV time-domain coverage in the late 2020s, providing simultaneous X-ray and UV observations that complement optical, infrared, and gravitational wave facilities.

ALSO Under "Events" on website:

urvey and Time-domain Astrophysical Research eXplorer

For 1 STAR-X Special COMMUNITY Session at HEAD (March 27-30, 2023, Hawaii)

see these iPosters

http://star-x.xraydeep.org/events

(see website for iPoster links!)

107.05, **9-10AM Monday**, January 9, "The Fast:" Discovering and Characterizing Transients in the X-ray and UV with STAR-X", Daryl Haggard et al.

360.13, **5.30-6.30pm, Wednesday,** January 11, "Studying 'the Furious', Growing Black Holes with STAR-X in the X-ray and UV", Francesca Civano et al.

461.01, **1-2 PM Thursday**, January 12, "The Proposed STAR-X MIDEX Mission: Studying The Fast, Furious and Forming Universe in the X-ray and UV", William Zhang

461.02, **1-2 PM Thursday**, January 12, "The STAR-X Science Case: Exploring the Fast, Furious and Forming Universe in X-rays and UV", Edmund Hodges-Kluck et al.

460.25, **1-2 PM Thursday**, January 12, "Studying "the Forming" Clusters of Galaxies over Cosmic time in the X-ray and UV with STAR-X", Eric Miller et al.

