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OVERVIEW
• Moon Burst Energetics All-sky Monitor is 3-year gamma-ray mission in cislunar orbit 
to explore the behavior of matter and energy under extreme conditions by observing 
relativistic astrophysical explosions.


• MoonBEAM provides key capabilities that are difficult to achieve in Low Earth Orbit:

• instantaneous all-sky gamma-ray field of view

• uninterrupted observations with >96% duty cycle

• background radiation stability


• 3 years of mission operation will provide observations of:

• 1600 binary compact mergers

• 5900 optically discovered core collapse supernovae

• 140 magnetar giant flares

• and enables 55 very high energy gamma-ray and 360 optical follow-up 
observations.
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Astro2020 Decadal Survey:  
Astronomical Transient Events

“Higher sensitivity all-sky monitoring 
of the high-energy sky, 
complemented by capabilities in the 
optical such as from Kepler and 
TESS, is a critical part of our vision 
for the next decade in transient and 
multi-messenger astronomy.”
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RELATIVISTIC TRANSIENTS
• Gamma-ray Bursts (GRBs)  

• most energetic explosions in the Universe.

• detectable in all wavelengths from radio to gamma rays.

• can generate multi-messenger signals: gravitational 
waves, neutrinos, and cosmic rays.


• Transient nature 
• prompt emission in gamma rays, lasting <1s to >100 s. 

• afterglow starting within minutes and can last up to years.

• detectable ~once per day, distributed all over the sky. 


• Era of Multi-Messenger Astrophysics 
• 2017-08-17: The merger of two neutron stars was 
detected in both gravitational waves and gamma rays, 
and subsequent kilonova and afterglow detection across 
the entire electromagnetic spectrum.


• Open questions remain such as merger and jet geometry, 
intrinsic properties etc., progress requires a population of 
joint detections.
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MISSION GOAL AND OBJECTIVES
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• Mission Goal: Explore the behavior of matter and energy in its most extreme environments

• Objective 1: Characterize the progenitors of gamma-ray bursts and their multi-messenger and  
multi-wavelength signals


• Objective 2: Identify conditions necessary to launch a transient astrophysical jet

• Objective 3: Determine the origins of the observed high-energy emission within the relativistic outflow
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• A spectrum of jets, from completely failed (choked) to ultra-relativistic.

• Jet launch mechanisms:


• magnetic (Blandford-Znajek mechanism)

• neutrino - antineutrino annihilation


• Central engine powering the jet with the observed temporal and spectral properties:

• black hole

• magnetar?
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Astro2020 Decadal Survey: “Understanding the central engines (newly formed 
compact objects like magnetars and BHs) that power many explosive transients 
continues to be a fundamental astrophysical challenge.”
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MISSION GOAL AND OBJECTIVES

• Mission Goal: Explore the behavior of matter and energy in its most extreme environments

• What are the physical characteristics of stellar explosions that lead to a relativistic transient? 

• What conditions lead to the range of jet scenarios, from a failed jet to an ultra-relativistic jet? 

• What are the different emission mechanisms that convert the relativistic outflow into radiation? 

• What is the distribution of outflow widths and what determines the outflow width? 

• What is the velocity distribution of ejecta across the transverse axis of the outflow?
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• Key open questions from the 2019 GW-EM task force report:

• What conditions are necessary to produce relativistic jets, and what is their composition/structure? 

• Do black hole - neutron star and binary black hole mergers produce electromagnetic signals?

• Can binary neutron star mergers reproduce the relative and total abundances of heavy (r-process) elements? 

• What is the current expansion rate of the Universe (Hubble constant)? 

• What is the equation of state of dense nuclear matter? 
•

Addressed by MoonBEAM

Enabled by MoonBEAM
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MISSION DESIGN

• Lockheed Martin SmallSat spacecraft bus

• reusing >90% of high-maturity Lunar Trailblazer design.

• compatible with ESPA Grande mass and volume constraint.

• high-heritage deep space propulsion approach to lunar resonant orbit 
from any Geosynchronous Transfer Orbit (GTO) rideshare launch.


• Orbital distance up to 460,000km from Earth (1.5 light-seconds).

• Orbital period of 13.7 days.

• Mission lifetime of 3 years, launch ready 2027.

• Communication


• continuous burst alert coverage with dedicated ground stations.

• daily data downlink with the Near Space Network.
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MISSION CAPABILITY
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• Orbital distance 22,000km to 460,000km from Earth (up to 1.5 light-seconds).

• Instantaneous all-sky field of view: Earth occults ~2% of the sky at 
closest approach, <<1% on average.


• high duty cycle >96%, 13+ days uninterrupted livetime: no passage 
through the South Atlantic Anomaly (SAA).


• more stable background compared to Low Earth Orbit: no atmospheric 
scattering and SAA-related radiation.


• additional localization improvement using timing triangulation technique 
with other gamma-ray missions.

LEO      
instrument FoV

Blocked by Earth

LEO instrument 
FoV

Fermi-GBM turned off for SAA 2 minutes after 
GRB 170817A / GW170817.

MoonBEAM All-sky Instantaneous Coverage
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INSTRUMENT PERFORMANCE
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• 6 scintillating detectors positioned for instantaneous all-sky coverage,  
no pointing needed.


• each detector module consists of a NaI(Tl)/CsI(Na) phoswich and flat panel PMTs.

• phoswich design enables simultaneous dual-mode observations:

• low background, direction dependency for localization

‣pulse discrimination identifies origin >96% for background rejection


• wide energy range and wide field-of-view for spectroscopy

‣10—5000 keV, prompt GRB peak energy range

‣10% energy resolution at 662 keV
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SCIENCE TEAM
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Oliver Roberts (USRA)

Jacob Smith (NRL)
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SUMMARY
MoonBEAM provides essential gamma-ray observations of relativistic astrophysical transients 
with the following capabilities:


• instantaneous all-sky field of view from lunar resonant orbit.

• 13+ days of uninterrupted livetime.

• stable background for ultra long duration GRBs.

• sensitive to prompt GRB emission energy range, with broad coverage for 
spectroscopy.


• independent localization and longer baseline for additional localization improvement 
with other gamma-ray missions.


• rapid alerts to the astronomical community for contemporaneous and follow-up 
observations.


• planned launch in ~2027, overlapping with upcoming new capabilities identified by the 
Decadal Survey and others.
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Time Domain Astrophysics Program (Highest Priority Sustaining Activity for Space)

“Exploring the cosmos in the multi-messenger and time domains is a key scientific priority for 
the coming decade, with new capabilities for discovery on the horizon with the Rubin 
Observatory, Roman, LIGO/Virgo and the Kamioka Gravitational Wave Detector (KAGRA), and 
IceCube.”
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