VHE Gamma-Ray Astronomy & the Decadal Survey

Reshmi Mukherjee
Barnard College, Columbia University

GammaSIG, 7 28 Jan 2022
Outline

- Current status of the field
 - Some key results – current instruments

- Future prospects
 - Design drivers
 - The Decadal Survey
 - Instruments under development

- LE or MeV: 0.1 - 100 MeV
- HE or GeV: 0.1 - 100 GeV
- VHE or TeV: 0.1 - 100 TeV

} domain of space-based astronomy

} domain of ground-based astronomy
Gamma-Ray Instrument Synergies

Low-energy threshold - Satellites Fermi-LAT, AGILE: 100 MeV to > 30 GeV
Sky survey, transients

High sensitivity – Current IACTs H.E.S.S., MAGIC, VERITAS: 10s GeV to > 30 TeV
Exceptional sensitivity, but limited field of view, high resolution energy spectra, transients

Large-FoV arrays - HAWC, LHAASO: ~ 0.1 to 100 TeV
High duty cycle, extended sources
VHE Detection Techniques

~100% duty-cycle
Steradian field of view
Modest precision
Modest collection area

~15% duty-cycle
~4 degree field of view
High precision
Large collection area

Slide courtesy Jim Hinton, ICRC 2021
The Three Major IACTs

VERITAS

MAGIC

H.E.S.S.

National Geographic Night Sky Map

Reshmi Mukherjee, GammaSIG, AAS2022
Water Cherenkov Detectors - HAWC

- Sierra Negra mountains, Mexico
- 4100 km asl
- Observes 2/3rd sky every 24 hrs
- 100 GeV – 100 TeV
VHE Gamma-Ray Sky

- More than 200 sources
- 10 different source classes
- Detailed measurements of spectra and light curves
Sensitive Surveys of the Galactic Plane

H.E.S.S. & HAWC Galactic Plane Surveys

- H.E.S.S. survey of the Milky Way < 2% Crab Nebula sensitivity
- 78 sources in H.E.S.S. GPS
- Comparison of the Galactic plane observed with H.E.S.S. and HAWC: results are consistent

Precision Measurements: Supernova remnants

RXJ 1713.7-3946: Spatially resolved spectra with unprecedented resolution (<0.05°)
- TeV shell morphology, close correlation with X-rays, provides insights into physical processes

IC 443: Close match between GeV & TeV shell morphology and distribution of shocked gas

Reshmi Mukherjee, GammaSIG, AAS2022
Multimessenger: Blazar - Neutrino Association

IC170922 and TXS 0506+056: First evidence (3σ) for a neutrino source
Are blazars the sources of the highest energy cosmic rays?

- Sept 22, 2017: Detection of a high-energy ν ($E \sim 290$ TeV) by IceCube

IceCube + MWL, Science, 361 (2018)
Multimessenger: EM Counterparts to Gravitational Waves

- GW 170817: The first observation of GWs from a binary NS inspiral
- Detected by LIGO & VIRGO
- EM emission observed in multiple wavelength bands
- Associated with GRB170817A (GBM)
- $z=0.0098$
- Not detected by LAT or IACTs

Gamma-Ray Bursts as VHE Sources

GRB 190114C (MAGIC Coll., Nature, 2020)
- long GRB, $z = 0.42$
- for 40’ after T0 +60 s
- 0.2 -1 TeV

GRB 180720B (H.E.S.S. Coll., Nature, 2020)
- long GRB, $z = 0.65$
- after T0 + 10h

GRB 190829A (H.E.S.S. Coll., Science)
- long GRB, $z = 0.078$
- for 3 nights after T0 + 4,3h
- 0.18-3.3 TeV

GRB 160821B (MAGIC Coll. ApjL 2021)
- short GRB, $z =0.162$
- $3\sigma @ E>500$ GeV
- for 4h after T0+24s

GRB 201015A (PoS ID 305, Y.Suda)
- long GRB, $z=0.42$
- for 3.4 h after T0+40s
- 3.5σ above 50 GeV

GRB 201216C (PoS ID 395, S.Fukami)
- long GRB, $z=1.1$
- for 20’ after T0+

Credits: NASA, ESA and M. Kornmesser

Slide after R. Zanin ICRC 2021
Nova Shocks – New TeV Source Class

August 2021, ATel #14844:
Detection of VHE gamma-ray emission from the recurrent nova RS Ophiuchi with H.E.S.S.

- RS Ophiuchi: High-mass WD/red giant binary, an orbital period of 455d
- Outburst of recurrent nova RS Ophiuchi, detected with Fermi/LAT
- $>6\sigma$ detection by H.E.S.S.
Gamma-Ray Instruments in the next decade

- LHAASO
- SWGO
- CTA
The Next Decade and Astro2020
Astro 2020 Science:
Three science themes addressing fundamental and profound questions for humanity and for understanding our place in the space and time of the Cosmos.

- A step-by-step path to discovering habitable worlds and life elsewhere.
- Time-domain multi-messenger astrophysics to trace the earliest stages of the observable universe.
- Formation and evolution of stars and galaxies from the Big Bang to today.
LHAASO

High duty cycle: ~100% running time
Large FOV:
- 1/7 of the sky at any time
- 60% of the sky in a diurnal observation

Sichuan, China
4410 m asl
1.3 km²

- WCDA (100 GeV - 30 TeV): VHE (>0.1 TeV) γ-ray astronomy
- KM2A (10 TeV - 10 PeV): UHE (>0.1 PeV) γ-ray astronomy
- WFCTA (10 TeV - 1 EeV)
- All detectors are in DAQ since July 2021

From R. Yang, CDY Extreme Accelerators Talk
https://cdy-institute.ie/

Reshmi Mukherjee, GammaSIG, AAS2022
Detection of more than 530 γ at energies above 100 TeV
Up to 1.4 PeV from 12 UHE γ-ray sources with a statistical significance $> 7\sigma$ (Cao et al. Nature, 594, 33, 2021)

Crab Nebula: An extreme electron accelerator: 2.3 PeV electrons
The Southern Wide-Field Gamma-Ray Observatory

- Complementing LHAASO – a complete view of the TeV-PeV sky
- Formed 2019: ~3-year R&D phase
- Design SWGO & choose Site
- Exploring three concepts → Tanks, artificial pond & natural lake

From Hinton, 2021 ICRC
The Cherenkov Telescope Array (CTA)

Latest updates from Roberta Zanin (CTAO Project Scientist)
ICRC 2021

25 Countries
Over 150 Institutes
About 1500 Members

https://www.cta-observatory.org/
CTA DESIGN drivers

- Sensitivity (x10)
- Full-sky coverage, larger FoV (x2)
- Wide energy range: 20 GeV to 300 TeV
- Arc-min angular resolution
- 10% energy resolution
- Rapid slewing for transient follow-up
Adding U.S.-led Schwarzschild-Couder Telescope (SCT) dual-mirror design
CTA Project Phases

- **Construction phase (5 years):**
 Alpha configuration: Southern Array: 14 MSTs + 37 SSTs;
 Northern Array: 4 LSTs + 9 MSTs

- **Operation & Enhancement phase**
 Depending on the availability of funds aim towards deployment of full scope Omega configuration
 - 4 LSTs + 25 MSTs + 70 SSTs (Southern Array) and 4 LSTs + 15 MSTs (Northern Array), depending on available funds
CTA Large-Sized Telescope

LST-1 already performing science

- Detection of Crab Nebula and pulsar
- AGN Detections: Mrk 501, Mrk 421, 1ES 1959+650, 1ES 0647+250 and PG 1553+113
The SCT: big eyes with a sharper view
The SCT: big eyes with a sharper view

- Superior optical angular resolution over a wide (~8°) field of view
- Light focused on a smaller surface → enables the use of state-of-the-art sensors
- Better sensitivity and reduced observation time
- Better γ-ray PSF across the FoV for morphology, survey, and transients

γ-ray Shower
Energy: 1 TeV

Proton Shower
Energy: 3.2 TeV

DC-MST Images
7.7° field of view, 0.17° pixels
1,855 channels

SCT Images
8° field of view, 0.067° pixels
11,328 channels
The CTA SCT Project

- Jan 23, 2019: First light of the prototype SCT (pSCT)
- Oct 2020: CTA Consortium endorses the development and construction of SCTs to enhance and complement DC-MSTs
- Ongoing: Instrumentation of the focal plane to 11k+ channels with upgraded SiPMs
- 2023: Expected completion of pSCT camera upgrade to full 8° field of view

Astro 2020 Decadal Survey endorses CTA-US contributions of SCT telescopes as an essential element of US multimessenger strategy
VHE/UHE γ-Ray Astronomy
- US participation in CTA Ground Based Observatory
- CTAO is mature project, ready to move forward
- 10 SCT Telescopes- completed design, move to production
- $40M$ US Construction costs, $3M/year US operations costs

US participation in SWGO
- $20M$ US Construction cost
- Southern hemisphere extension of an air shower detector array for VHE γ-ray astronomy based upon HAWC technology
Astro2020 Decadal Survey: Continuity of Multi-messenger Capabilities

Multi-Messenger Astronomy Must be Coordinated

Existing/planned projects
Missing capabilities
Endorsed projects

Gravitational Waves
nHz
mHz
kHz
NANOGrav
NANOGrav expanded
SKA bolsters nHz efforts
mHz GW community development
Advanced LIGO/Virgo/Kagra
Improved Advanced LIGO
LISA
Cosmic Explorer

Neutrinos
VHE
IceCube
IceCube-Gen2 (VHE and UHE)

UHE
Discovery uncertain

Gamma Rays
HE
Swift/Fermi ??
Impending gap in monitoring capabilities
New Probes for Multi-Messenger Astro

VHE
IACTs/HAWC/LHAASO
LHAASO
CTA and SWGO

Cosmic Rays
VHE
AMS/DAMPE/CALET
Auger/TAx4

UHE

HE: MeV-GeV, VHE: TeV-PeV, UHE: EeV-ZeV

Reshmi Mukherjee, GammaSIG, AAS2022
Exploring the non-thermal Universe “ASTRO”

- Pulsars/PWN
- Binaries
- SNRs
- Starbursts
- AGN
- GRBs
- SMBH
- SMBH accretion, jets
- VHE γ-rays
- Unknowns (Gal Center)
- Dark Matter
- Cosmological Fields
- PBHs, QGrav

Probing New Physics at GeV/TeV scale “PARTICLE”
Summary and Outlook

- CTA will cover 20 GeV to 300 TeV range, with superior angular resolution and sensitivity

- LHAASO will have unprecedented reach >20 TeV -- Ideal for PeVatron searches

- SWGO will complement LHAASO – a complete view of the TeV-PeV sky

- Synergy between IACTs and Water Cherenkov detectors: Detailed morphology study of PeVatrons, TeV halo, supernova shells now possible

- TeV instruments will be critical partners in multimessenger studies

- Complementary coverage with satellite missions in the MeV – GeV range will be crucial
Thank you