NASA PhysPAG Cosmic Ray Science Interest Group Meeting

 Tuesday January 18
Pulsars as cosmic-ray sources

Claire Guépin

Neil Gehrels fellow, University of Maryland, College Park \& NASA Goddard Space Flight Center, Greenbelt

Introduction - Pulsars as cosmic-ray sources

Physical properties

highly magnetized + rapid rotation \rightarrow expected charge extraction from the surface observed non-thermal radiation \rightarrow acceleration of leptons

Schematic view of an aligned rotator

Introduction - Pulsars as cosmic-ray sources

Physical properties

highly magnetized + rapid rotation \rightarrow expected charge extraction from the surface observed non-thermal radiation \rightarrow acceleration of leptons

Pulsars as cosmic-ray sources

Venkatesan et al. (1997), Blasi et al. (2000), Arons (2003), Fang et al. (2012a), Fang et al. (2013a), Lemoine et al. (2015), Kotera et al. (2015)

Introduction - Pulsars as cosmic-ray sources

Physical properties

highly magnetized + rapid rotation \rightarrow expected charge extraction from the surface observed non-thermal radiation \rightarrow acceleration of leptons

Pulsars as cosmic-ray sources

Venkatesan et al. (1997), Blasi et al. (2000), Arons (2003), Fang et al. (2012a), Fang et al. (2013a), Lemoine et al. (2015), Kotera et al. (2015)

Acceleration of protons in pulsar magnetospheres, first principles simulations C. Guépin, B. Cerutti, K. Kotera (2020)

Pulsars as pevatrons and diffuse TeV emission in the Galactic Center region C. Guépin, L. Rinchiuso, K. Kotera, E. Moulin, T. Pierog and J. Silk (2018)

Acceleration of protons in pulsar magnetospheres

Previous work

Chen \& Beloborodov (2014), Philippov \& Spitkovsky (2018)

Our work

C. Guépin, B. Cerutti, K. Kotera (2020)

Particle in cell (PIC) simulations Zeltron (Cerutti et al., 2013)
\rightarrow compromise between kinetic and macroscopic scales

- neutron star radius $\sim 10 \mathrm{~km} \rightarrow 100 \mathrm{~cm}$
- magnetic field $\sim 10^{9} \mathrm{G}-10^{13} \mathrm{G} \rightarrow 10^{5} \mathrm{G}$
- millisecond rotation $R_{\mathrm{LC}} / R_{\star}=5$
- proton mass / electron mass ratio $\left(m_{p} / m_{e}\right) / 100$
- separation macroscopic / kinetic scales
rotation axis $=$ initial magnetic dipole axis

Acceleration of protons in pulsar magnetospheres

- Injection of protons and electrons at the surface

Main processes impacting magnetosphere structure and particle acceleration

- Injection of electrons and positrons: local pair production criterion, $\gamma_{\text {min,pp }}=f_{\mathrm{pp}} \gamma_{0, e}$

$$
\mathrm{fpp}=0.01
$$

$$
\text { time step }=425000
$$

0

$$
f p p=0.05
$$

time step $=450000$
0

Acceleration of protons in pulsar magnetospheres

Particle acceleration

high pair production: $\mathrm{fpp}=0.01$ low pair production: $\mathrm{fpp}=0.05$

Acceleration of protons in pulsar magnetospheres

Proton, electron and positron spectra

Dashed lines: total, solid lines: escaping
high pair production: $\mathbf{f p p}=\mathbf{0 . 0 1}$
low pair production: $\mathrm{fpp}=\mathbf{0 . 0 5}$

Acceleration of protons in pulsar magnetospheres

Proton acceleration: maximum energy and luminosity

 decrease of pair production

$$
\text { Simulation results: } \gamma_{p, \max }=5-75 \% \gamma_{0, \mathrm{p}} \text { and } L_{p, \max }=0.2-4 \% L_{0}
$$

Millisecond pulsars, using theoretical estimates of $\gamma_{0, \mathrm{p}}$ and L_{0} :

$$
\begin{array}{lrr}
E_{\mathrm{p}} \simeq 5 \times 10^{15}-2 \times 10^{16} \mathrm{eV} B_{\star, 9} R_{\star, 6}^{2} P_{-3}^{-1} & L_{\mathrm{p}} \simeq 3 \times 10^{34}-5 \times 10^{35} \mathrm{erg} \mathrm{~s}^{-1} B_{\star, 9}^{2} R_{\star, 6}^{6} P_{-3}^{-4} \\
\text { Claire Guépin } & \mathbf{9} & \text { Jan 182022-CRSIG }
\end{array}
$$

Pulsars as pevatrons

C. Guépin, L. Rinchiuso, K. Kotera, E. Moulin, T. Pierog and J. Silk (2018)

Diffuse emission in the galactic center (GC) region

- Fermi-LAT, GeV range
- H.E.S.S., TeV range
\rightarrow radial profile

inner 50 pc region: spectrum

HESS Collaboration (2016)

Pulsars as pevatrons

C. Guépin, L. Rinchiuso, K. Kotera, E. Moulin, T. Pierog and J. Silk (2018)

Diffuse emission in the galactic center (GC) region

- Fermi-LAT, GeV range
- H.E.S.S., TeV range
\rightarrow radial profile, spectrum

Spectrum in the inner 50 pc region
HESS collaboration (2016) and Gaggero et al. (2017)

Pulsars as pevatrons

Central Molecular Zone
$R \sim 200 \mathrm{pc}, n_{\text {gas }} \sim 100 \mathrm{~cm}^{-3}$

Bulge millisecond pulsar (MSP) distribution
$F_{\mathrm{b}}\left(r_{s}, \theta, \phi\right)=\frac{\left(3-\alpha_{\mathrm{b}}\right) N_{\mathrm{b}}}{4 \pi r_{\text {max }}^{3-\alpha_{\mathrm{b}}}} r_{s}^{-\alpha_{\mathrm{b}}} \quad$ for $0<r_{s}<r_{\text {max }}$
$N_{\mathrm{b}}=[800-3600]$ for $L_{\gamma} \in\left[10^{33}, 10^{36}\right] \mathrm{erg} \mathrm{s}^{-1}$,

- but also $N_{\mathrm{b}} \sim 4 \times 10^{4}$ for $L_{\gamma}>10^{32} \mathrm{erg} \mathrm{s}^{-1}$
- or no evidence for bulge

Disk MSP distribution
$F_{\mathrm{d}}\left(r_{s}, \theta, z\right)=\frac{r_{s}^{n} \exp \left(-r_{s} / \sigma\right) \exp \left(-\left|z_{s}\right| / z_{0}\right) N_{\mathrm{d}}}{4 \pi z_{0} \sigma^{n+2} \Gamma(n+2)}$
$N_{\mathrm{d}}=[4000-16000]$ for $L_{\gamma} \in\left[10^{33}, 10^{36}\right] \mathrm{erg} \mathrm{s}^{-1}$

Radial distributions

r_{s} distance from Galactic Center

Pulsars as pevatrons

Our scenario

Hypothesis: protons accelerated by MSP population

- acceleration efficiency
- injection from individual objects
- diffusion of protons in interstellar medium
- integrate over spatial, initial spin, magnetic field and age distributions
- interaction with molecular clouds: $p p \rightarrow \pi^{0} \rightarrow \gamma \gamma$
predictions for radial profile and spectrum of gamma-rays

$$
L_{\gamma}(\epsilon>1 \mathrm{TeV}, r) \quad \epsilon^{2} \Phi_{\gamma}(\epsilon) \text { in the inner } 50 \text { pc region }
$$

Pulsars as pevatrons

With following parameters

- hard injection spectrum E^{-1} from pulsars
- spatial distribution: bulge component
- log-normal initial spin distribution
- power law dipole magnetic field distribution
$\propto B^{-a}$ with $a=1 \quad B_{\text {max }} \geq 10^{11} \mathrm{G}$
- uniform age distribution
$\eta_{p} N_{\mathrm{b}} \sim 10^{6}, \eta_{\text {acc }} \sim 0.03, \kappa \sim 10^{3} \quad \eta_{p}$: baryon loading
different regions: radial profile

inner 50 pc region: spectrum

Conclusions - Pulsars as cosmic-ray sources

- pulsars candidates for production of cosmic rays
- PIC simulations: focus on aligned dipole (initial condition), millisecond periods
- pulsar magnetospheres can accelerate protons
- support analytical estimes, millisecond pulsars are potential PeVatrons
- large-scale observable consequences, e.g. Galactic center diffuse gamma rays

Prospects

- proton injection from the neutron star surface: impact of local (EM fields) and nonlocal (pair production) effects
- escape of proton \& electron-positron spectra from the magnetosphere: impact of mass ratio, magnetic field, rotation period, and other parameters
- propagation of proton/electron-positron spectra in the wind, termination shock (TS)
- possible contribution to the development of instabilities at TS
- impact on propagation and emissions (e.g. gamma-ray halos, Geminga)

