NASA PhysPAG Cosmic Ray Science Interest Group Meeting Tuesday January 18

Pulsars as cosmic-ray sources

Claire Guépin

Neil Gehrels fellow, University of Maryland, College Park & NASA Goddard Space Flight Center, Greenbelt

Physical properties

highly magnetized + rapid rotation \rightarrow expected charge extraction from the surface observed non-thermal radiation \rightarrow acceleration of leptons

Schematic view of an aligned rotator

Physical properties

highly magnetized + rapid rotation \rightarrow expected charge extraction from the surface observed non-thermal radiation \rightarrow acceleration of leptons

Pulsars as cosmic-ray sources

Venkatesan et al. (1997), Blasi et al. (2000), Arons (2003), Fang et al. (2012a), Fang et al. (2013a), Lemoine et al. (2015), Kotera et al. (2015)

Claire Guépin

Physical properties

highly magnetized + rapid rotation \rightarrow expected charge extraction from the surface observed non-thermal radiation \rightarrow acceleration of leptons

Pulsars as cosmic-ray sources

Venkatesan et al. (1997), Blasi et al. (2000), Arons (2003), Fang et al. (2012a), Fang et al. (2013a), Lemoine et al. (2015), Kotera et al. (2015)

Acceleration of protons in pulsar magnetospheres, first principles simulations

C. Guépin, B. Cerutti, K. Kotera (2020)

Pulsars as pevatrons and diffuse TeV emission in the Galactic Center region

C. Guépin, L. Rinchiuso, K. Kotera, E. Moulin, T. Pierog and J. Silk (2018)

Previous work

Chen & Beloborodov (2014), Philippov & Spitkovsky (2018)

Our work

C. Guépin, B. Cerutti, K. Kotera (2020)

Particle in cell (PIC) simulations Zeltron (Cerutti et al., 2013)

→ compromise between kinetic and macroscopic scales

- □ neutron star radius $\sim 10 \, \text{km} \rightarrow 100 \, \text{cm}$
- $\mbox{ }$ magnetic field $\sim 10^9\,G 10^{13}\,G \rightarrow 10^5\,G$
- millisecond rotation $R_{\rm LC}/R_{\star} = 5$
- \square proton mass / electron mass ratio $(m_p/m_e)/100$
- separation macroscopic / kinetic scales

Injection of protons and electrons at the surface

Main processes impacting magnetosphere structure and particle acceleration

□ Injection of electrons and positrons: local **pair production** criterion, $\gamma_{\min,pp} = f_{pp} \gamma_{0,e}$

Claire Guépin

Particle acceleration

Claire Guépin

Proton, electron and positron spectra

Dashed lines: total, solid lines: escaping

Claire Guépin

Proton acceleration: maximum energy and luminosity

Simulation results: $\gamma_{p,\text{max}} = 5 - 75 \% \gamma_{0,p}$ and $L_{p,\text{max}} = 0.2 - 4 \% L_0$

Millisecond pulsars, using theoretical estimates of $\gamma_{0,p}$ and L_0 :

 $E_{\rm p} \simeq 5 \times 10^{15} - 2 \times 10^{16} \,\mathrm{eV} \, B_{\star,9} R_{\star,6}^2 P_{-3}^{-1}$

Claire Guépin

Jan 18 2022 - CRSIG

 $L_{\rm p} \simeq 3 \times 10^{34} - 5 \times 10^{35} \, {\rm erg \, s^{-1}} \, B_{\star,9}^2 R_{\star,6}^6 P_{-3}^{-4}$

C. Guépin, L. Rinchiuso, K. Kotera, E. Moulin, T. Pierog and J. Silk (2018)

Diffuse emission in the galactic center (GC) region

- Fermi-LAT, GeV range
- H.E.S.S., TeV range

\rightarrow radial profile

HESS Collaboration (2016)

C. Guépin, L. Rinchiuso, K. Kotera, E. Moulin, T. Pierog and J. Silk (2018)

Diffuse emission in the galactic center (GC) region

- Fermi-LAT, GeV range

 \rightarrow radial profile, spectrum

H.E.S.S., TeV range

Spectrum in the inner 50 pc region

Bulge millisecond pulsar (MSP) distribution

$$F_{\rm b}(r_s, \theta, \phi) = \frac{(3 - \alpha_{\rm b})N_{\rm b}}{4\pi r_{\rm max}^{3 - \alpha_{\rm b}}} r_s^{-\alpha_{\rm b}} \quad \text{for } 0 < r_s < r_{\rm max}$$

$$N_{\rm b} = [800-3600] \text{ for } L_{\gamma} \in [10^{33}, 10^{36}] \text{ erg s}^{-1},$$

• but also
$$N_{\rm b} \sim 4 \times 10^4$$
 for $L_{\gamma} > 10^{32}$ erg s⁻¹

• or no evidence for bulge

Disk MSP distribution

$$\begin{split} F_{\rm d}(r_s,\theta,z) &= \frac{r_s^n \exp(-r_s/\sigma) \exp(-|z_s|/z_0) N_{\rm d}}{4\pi z_0 \sigma^{n+2} \Gamma(n+2)} \\ N_{\rm d} &= [4000\text{-}16000] \text{ for } L_{\gamma} {\in} [10^{33},\!10^{36}] \text{ erg s}^{-1} \end{split}$$

Radial distributions

Claire Guépin

Our scenario

Hypothesis: protons accelerated by MSP population

- acceleration efficiency
- injection from individual objects
- diffusion of protons in interstellar medium
- integrate over spatial, initial spin, magnetic field and age distributions
- interaction with molecular clouds: $pp \rightarrow \pi^0 \rightarrow \gamma \gamma$

predictions for **radial profile** and **spectrum** of gamma-rays

 $L_\gamma(\epsilon>1\,{
m TeV},r)$ $\epsilon^2\Phi_\gamma(\epsilon)$ in the inner 50 pc region

With following parameters

- hard injection spectrum E^{-1} from pulsars
- spatial distribution: bulge component
- log-normal initial spin distribution
- power law dipole magnetic field distribution $\propto B^{-a}$ with a = 1 $B_{\text{max}} \ge 10^{11} \text{ G}$
- uniform age distribution

 $\eta_p N_b \sim 10^6, \eta_{acc} \sim 0.03, \kappa \sim 10^3$ η_p : baryon loading

Claire Guépin

14

Conclusions - Pulsars as cosmic-ray sources

- pulsars candidates for production of cosmic rays
- PIC simulations: focus on aligned dipole (initial condition), millisecond periods
- pulsar magnetospheres can accelerate protons
- support analytical estimes, millisecond pulsars are potential PeVatrons
- large-scale observable consequences, e.g. Galactic center diffuse gamma rays

Prospects

- proton **injection** from the neutron star surface: impact of local (EM fields) and nonlocal (pair production) effects
- escape of proton & electron-positron spectra from the magnetosphere: impact of mass ratio, magnetic field, rotation period, and other parameters
- propagation of proton/electron-positron spectra in the wind, termination shock (TS)
 - possible contribution to the development of instabilities at TS
 - impact on propagation and **emissions** (e.g. gamma-ray halos, Geminga)