AstroPix: Investigating the Potential of Silicon Pixel Sensors in the Future of Gamma-ray Astronomy

I. Brewer1 on behalf of R. Caputo2, M. Negro3, R. Leys4, I. Peric4, C. Kierans2, J. Metcalfe5, and J. Perkins2

1University of Maryland, College Park
2NASA Goddard Space Flight Center (GSFC)
3University of Maryland, Baltimore County
4ASIC and Detector Laboratory, Karlsruhe Institute of Technology
5Argonne National Laboratory
CMOS

- **Complementary Metal-Oxide-Semiconductor (CMOS)** is a common fabrication technique used in commercial industry.
 - Mass produced —> low cost!
- Pixelated silicon sensors use High Voltage CMOS manufacturing processes to co-integrate detector and readout electronics.
 - Saves on space, power requirements
 - Less noisy
ATLASPix

- Built and optimized for the CERN experiment ATLAS.
 - Optimized for Minimizing Ionizing Particles (MIPs):
 - Radiation hard, oblong pixels.
 - Fast timing resolution of 25 ns, low digital energy resolution of 6 bits.
- Monolithic silicon pixels, each pixel 50 μm by 140 μm and 100 μm thick.
- Four matrices, each matrix 25 by 100 pixels (x by y).
- We’re using the same hardware to communicate to the device as was used at CERN and collaborators at CERN provided baseline measurements for our tests.

Two ATLASPix detectors side-by-side [2].
AstroPix Requirements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Resolution</td>
<td><2% at 60 keV, 10% at 60 keV required</td>
</tr>
<tr>
<td>Power Usage</td>
<td>~3 mW/cm²</td>
</tr>
<tr>
<td>Passive Material</td>
<td><5% on the active area of the silicon</td>
</tr>
<tr>
<td>Pixel Size</td>
<td>500 um</td>
</tr>
<tr>
<td>Silicon Thickness</td>
<td>500 um</td>
</tr>
<tr>
<td>Time Tag</td>
<td>~ 1us</td>
</tr>
<tr>
<td>Position Resolution</td>
<td>~250 um</td>
</tr>
</tbody>
</table>
Experimental Setup

- Radioactive sources were chosen based on the current dynamic range of the detector (~5 keV to 33 keV)
- Dynamic range limited by the current thickness of Si

<table>
<thead>
<tr>
<th>Source</th>
<th>Energy (keV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe55</td>
<td>5.89</td>
</tr>
<tr>
<td>Ge</td>
<td>9.89</td>
</tr>
<tr>
<td>Y</td>
<td>14.96</td>
</tr>
<tr>
<td>Mo</td>
<td>17.5</td>
</tr>
<tr>
<td>Cd109</td>
<td>21.99</td>
</tr>
<tr>
<td>Ba133</td>
<td>30.97</td>
</tr>
</tbody>
</table>
I. Brewer

237th AAS Meeting

TOT = Time Over Threshold

TOT photopeaks represent TOT hits from individual pixels, with pixels used from across the entire detector.
Analog Energy Calibration

- Calibration relates the found peak position in V at each source and energy and the theoretical energy value in keV.

- The detector response is non-linear, this isn’t surprising

- A three-degree polynomial was found to best represent the detector response
Analog Energy Resolution

E Res for Fe and Ba is ~7%. This exceeds the min requirement of 10% at 60 keV
AstroPix V1

- **Pixel**
 - 165x165 μm active pixel area, 200 μm pitch
 - Read out by connecting to both row and column

- **Matrix**
 - 4.5 x 4.5 mm chip area
 - 18 x 18 pixel matrix

- **Digital Periphery**
 - Time stamp counters for each row and column

- **Other**
 - 36 analog/comparator outputs

I. Brewer
R. Leys and I. Peric
237th AAS Meeting
AMEGO-X and Multimessenger Astrophysics

Gamma-ray observations played the critical discovery role in all major multimessenger discoveries in the past half decade.

- **Gravitational Waves + gamma rays:** Identified the first counterpart to a gravitational wave event.
- **High energy neutrinos + gamma rays:** Identified the first source of high energy neutrinos outside the galaxy.

The Science of Extreme Explosions and Extreme Accelerators
Summary and Next Steps

• Analog energy resolution of ATLASPix, a driving parameter for AstroPix, is encouraging

• Digital resolution needs to be redesigned; we can borrow from the functionality currently devoted to timing resolution

• AstroPix V1 has been fabricated and is about to undergo testing

• Promising start to monolithic Si in the future of gamma-ray astrophysics
References

Analog Output of ATLASPix

Histograms of the raw analog data (in volts) from two pixels. The same two sources, Fe55 and Cd109, were used. Left: Pixel (12,50). Right: Pixel (0,50).

- Pixel (12,50):
 - Fe: 0.081 ± 0.005 V
 - Cd: 0.288 ± 0.005 V

- Pixel (0,50):
 - Fe: 0.084 ± 0.006 V
 - Cd: 0.291 ± 0.005 V

I. Brewer
237th AAS Meeting
Hit Distribution

- Heatmaps of the ATLASPix detector showing the distribution of hits when the detector is exposed to radioactive sources.
- Both axes represent pixel number in the x and y direction respectively. Data was extracted from the digital DAQ file, which records x and y position of each hit.
- Left: Fe55, Right: Cd109