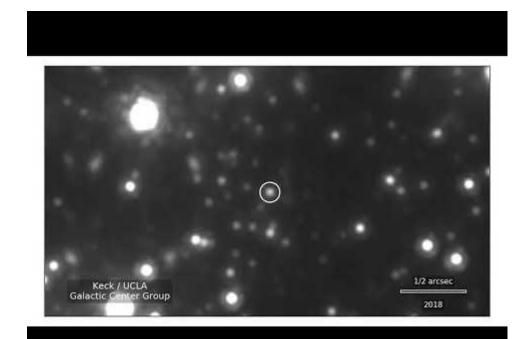
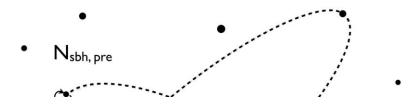
AGN at the Dawn of the Multi-Messenger Era

K. E. Saavik Ford CUNY BMCC/AMNH

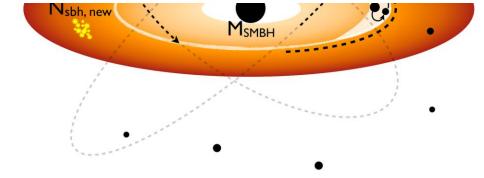
For MMA SAG


Our nearest galactic nucleus

Pericenter ~few 1000rg


Genzel++ 2018

 $N_{sBH} \sim 2x10^4$

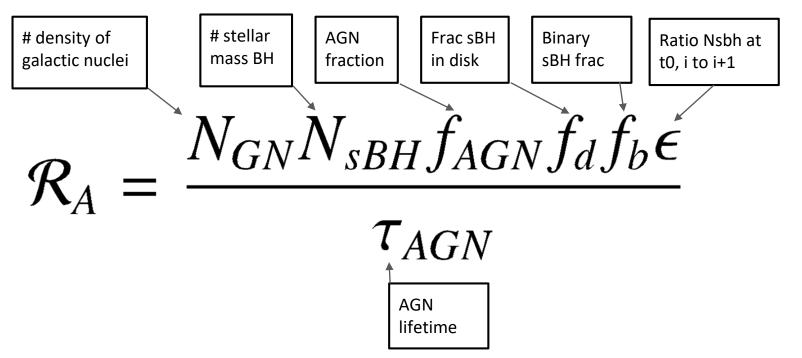

Hailey++ 2018

A cartoon AGN

There are THINGS* in disks!

McKernan, Ford++ 2012 McKernan, Ford++ 2014 Bellovary++ 2016 Bartos++ 2017 Stone++ 2017 McKernan, Ford++ THINGS t

*THINGS may cause: BBH mergers, SNe, TDEs, turbulence, heating... and death. Astrophysicists are not liable for any adverse effects. Ask your astrophysicist about THINGS today.


;e credit: O'Dowd

A Parameterized Rate Equation

$\mathcal{R}_{A} = \frac{N_{GN}N_{sBH}f_{AGN}f_{d}f_{b}\epsilon}{\tau_{AGN}}$

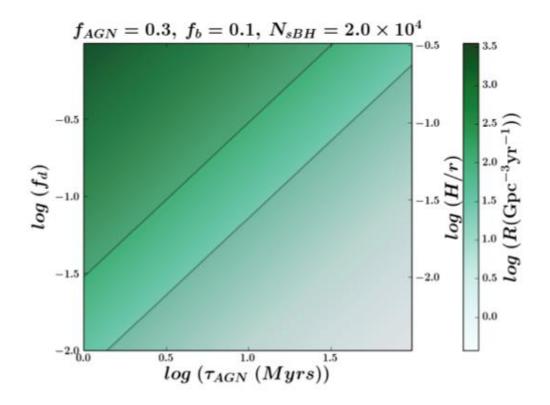
McKernan, Ford ++ 2018 arXiv:1702.07818

A Parameterized Rate Equation

McKernan, Ford ++ 2018 arXiv:1702.07818

Rate Values

Parameter	Lower	Upper
$N^a_{GN}({ m Mpc}^{-3})$	4×10^{-3}	10^{-2}
$N^b_{BH}(\mathrm{pc}^{-3})$	10^{3}	10^{6}
f^c_{AGN}	0.01	0.3
f_b	0.01	0.2
f_d^d	0.01	0.7
$\tau_{AGN}(Myr)$	1	100
ϵ	0.5	2
$\mathcal{R}(\mathrm{Gpc}^{-3}\ \mathrm{yr}^{-1})$	10^{-4}	104


McKernan, Ford++2018

It depends on the disk

```
\begin{array}{l} f_{d} \\ & \mbox{-related to H/r,} \\ f_{b} \\ & \mbox{-related to } t_{mig}, \, N_{\mbox{\tiny SBH}}, \, d\Sigma/dr \\ \tau_{AGN} \\ & \mbox{-Why?} \end{array}
```

Also N_{SBH}, so NSC properties, IMF, etc.

LINERs: not optically thick RIAFs

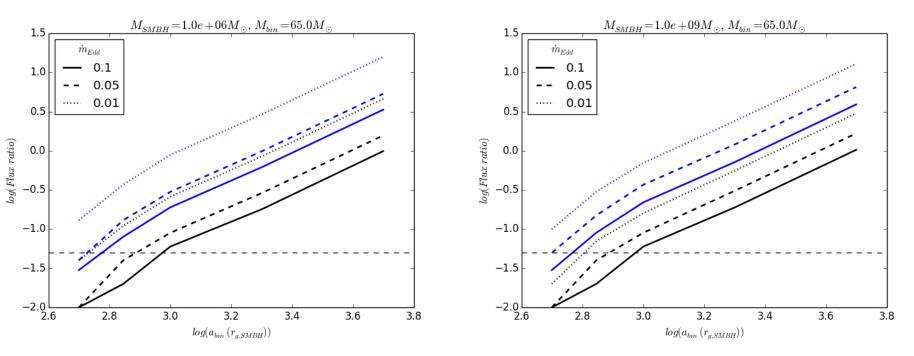
Ford & McKernan 2019

What else can we learn?

Statistical inference: current localization + galaxy catalogs: 660 BBH events

Bartos++ 2017; Ford++ 2019

EM counterparts: multimessenger sources


McKernan, Ford++ 2013, 2014, 2015

McKernan, Ford++ 2019: 1907.03746

Make lots of LISA sources

IMBH-SMBH binaries; evolution of multiband BBH

EM counterparts

McKernan, Ford++2019 Candidates! Graham++107.10

Even non-detections get us lots of info

- 1. Simulate universe
- 2. Simulate LIGO observations
- 3. Simulate EM followup

AGN become massive inverse problem

What we need

Improved galaxy catalogs (out to LIGO horizon redshifts)

Masses--to optimize EM followup

UV coverage

-Wide field/fast mosaicking

Theory work

-For the AGN inverse problem

-For LISA: multi-band evolution & IMRI waveforms

LISA data center: help non-GW astrophysicists