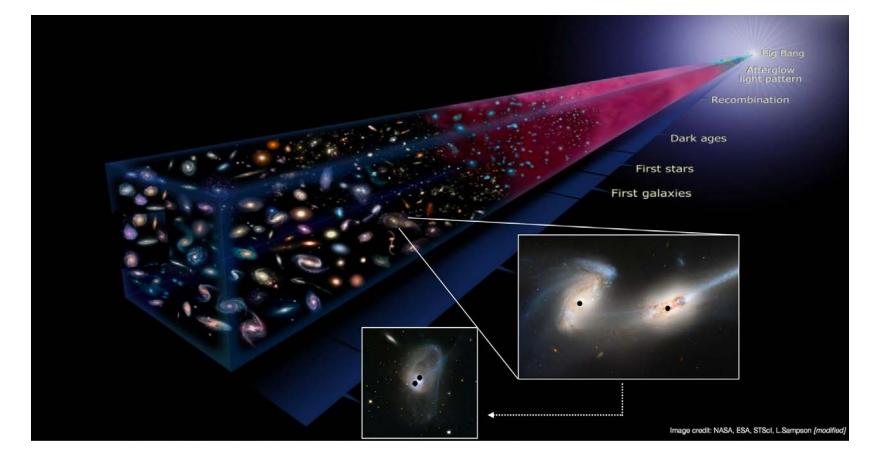
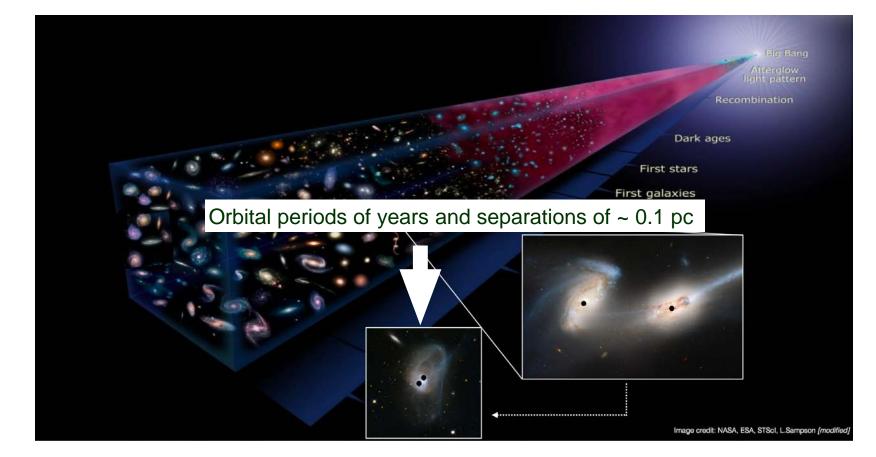
The NANOGrav 11-Year Data Set: New Insights into Galaxy Growth and Evolution

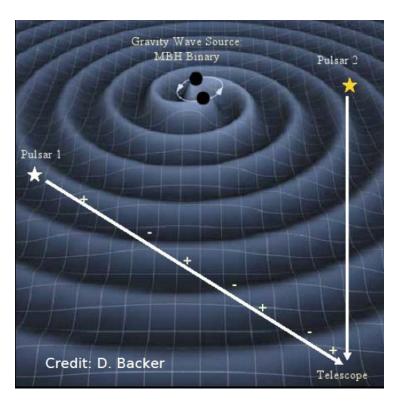
> Maura McLaughlin West Virginia University

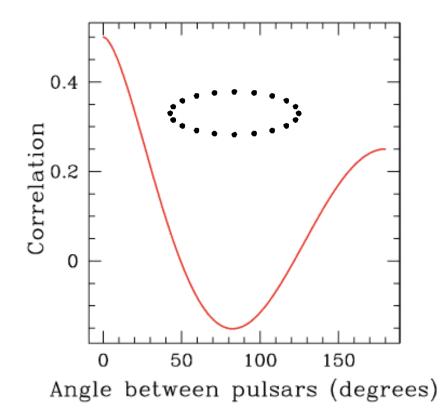


Galaxy Evolution 101

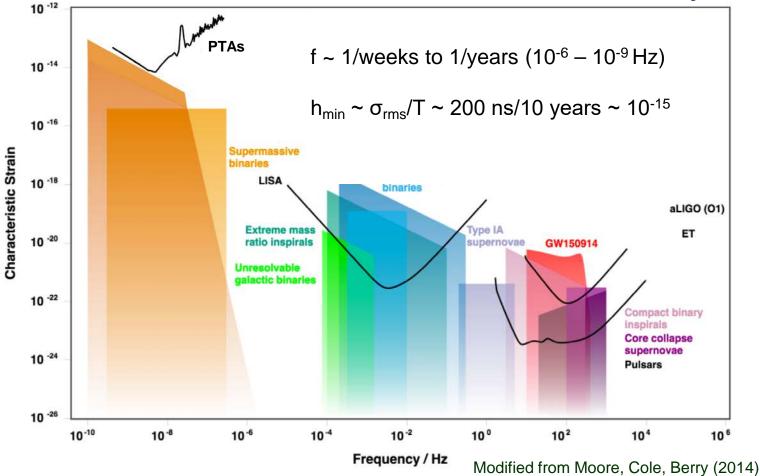


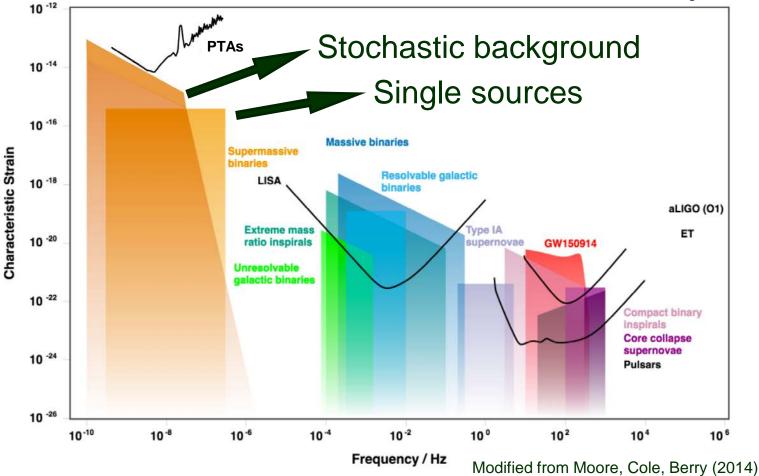
January 10 2019

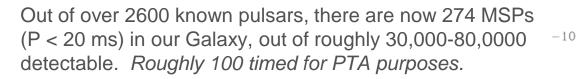

Galaxy Evolution 101

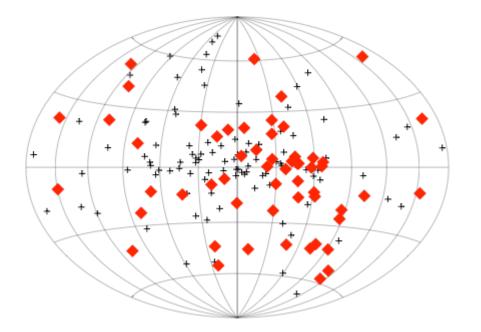


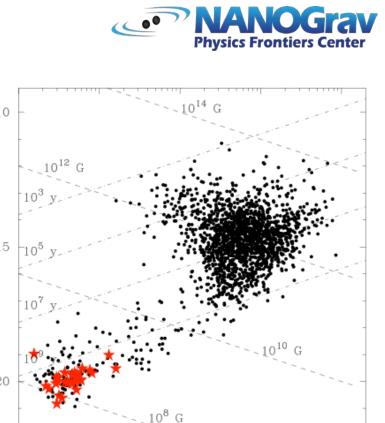
Low-Frequency GW Detection




Hellings & Downs, 1983, ApJ, 265, L39


ore, Cole, Berry (2014) January 10 2019





oore, Cole, Berry (2014) January 10 2019

Millisecond Pulsars (MSPs)

[Period derivative

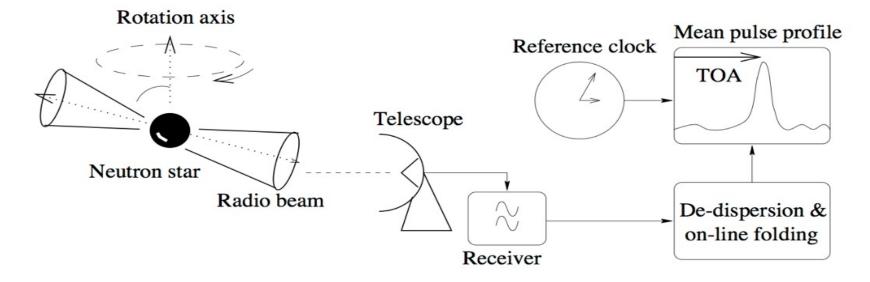
 \log_{10}

10

Red = part of worldwide PTA timing programs

0.1

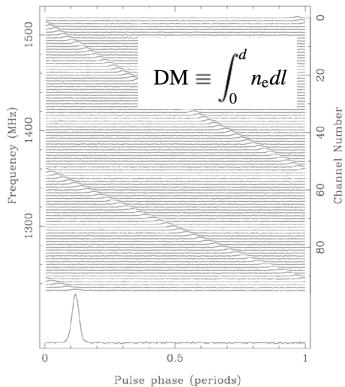
Period (seconds)

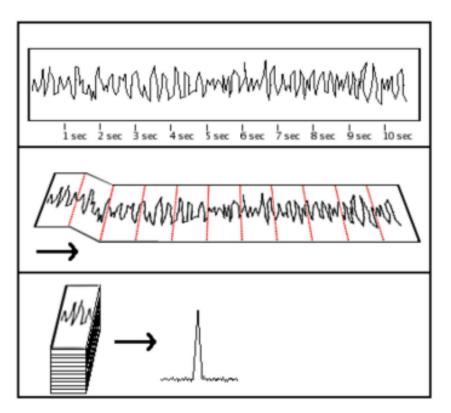

0.01

January 10 2019

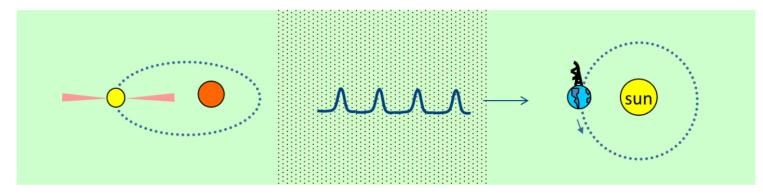
10

Pulsar Timing



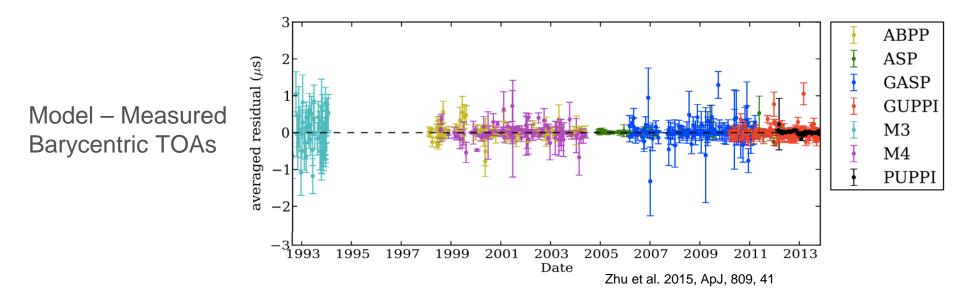

Credit: "Handbook of Pulsar Astronomy", Lorimer & Kramer (2005)

Pulsar Timing


De-dispersion: corrects for *variable* frequency dependent delays

Folding: Roughly a million *variable* pulses added per TOA

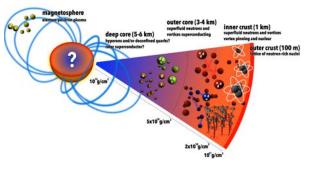
Many things affect arrival times



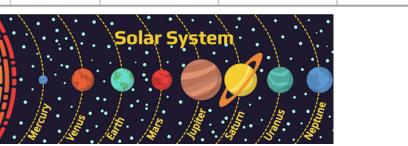
rotation period rotation period derivative timing noise	dispersion measure dispersion meas. variations	position proper motion parallax
Keplerian orbital elements relativistic orbital elements		solar electron density
kinematic perturbations of orbital elements (secular and annual phenomena)		

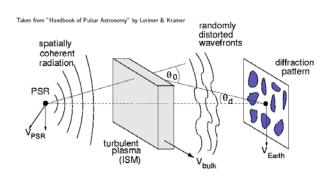
January 10 2019

Timing Residuals


PSR J1713+0747 (P=4.57 ms).

TOAs measured to tens of ns - RMS ~ 70 ns over *decades* timescales.


Sources of Noise in PTA Data



Extrinsic Intrinsic	Noise source	Achromatic?	Correlated in time?	Correlated in space?	Quadrupolar?
	Pulsar rotational irregularities	✓	✓	×	×
	Pulse jitter	✓	×	×	×
	Scattering and dispersion measure variations	×	✓	×	×
	Planetary ephemerides	✓	<	<	×
	Clock errors/offsets	<	✓	×	×
	GW background	✓	√	√	✓

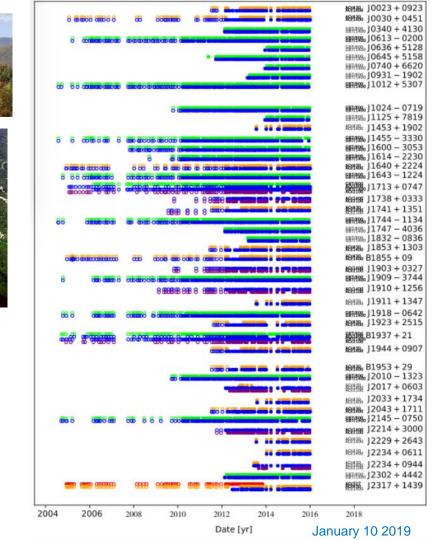
Watts et al. 2015, arXiv: 1501.00042

AAS Seattle

The Sun

January 10 2019

NANOGrav's Program


We observe 77 pulsars at two radio frequencies every one to four weeks for roughly 20-30 min.

Eleven-year data release includes 45 pulsars, including 31 binaries, 20 with parallax measurements, and 11 with measurable red noise.

New: better outlier analysis and procedures for mitigating solar effects

Data are public at http://data.nanograv.org

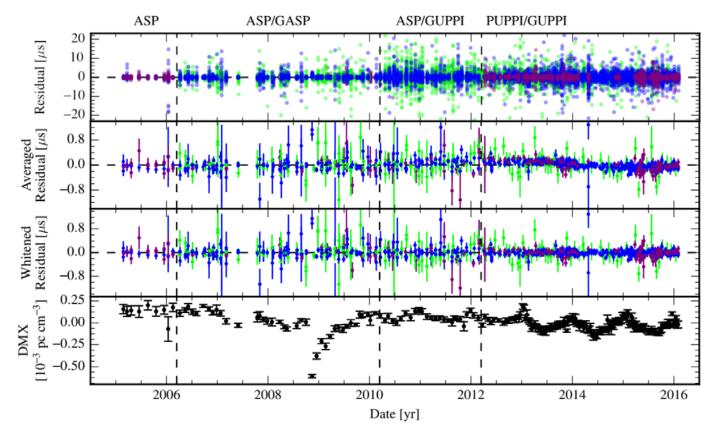
The NANOGrav Collaboration, ApJS, 235, 37

NANOGrav's Program

We observe 77 pulsars at two radio frequencies every one to four weeks for roughly 20-30 min.

12.5-year data release includes48 pulsars.

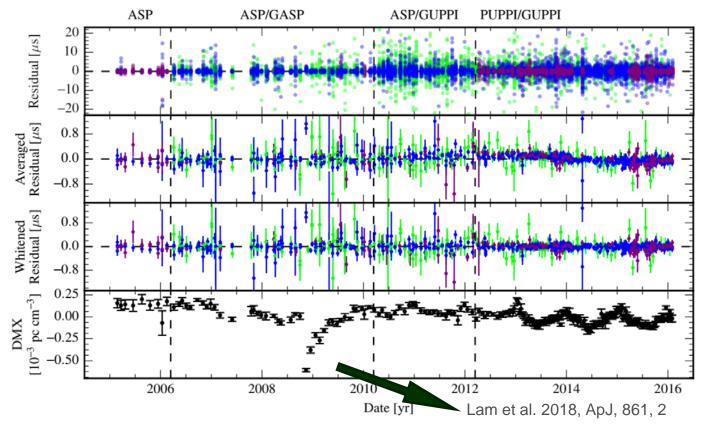
New: wideband timing, new timing package (PINT)



		🏼 ===		A8/1380	J0023 + 0923
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	88 88 88 88 88 88 88 88 88 88 88 88 88				J0030 + 0451
		_		887/8980	J0340 + 4130
8	****				J0613 - 0200
					J0636 + 5128
		• •			J0645 + 5158
					10740 + 6620
					J0931 - 1902
88 88 6666688888888					J1012 + 530
	() () () () () () () () () () () () () (J1024 - 0719
	0 🚥				J1125 + 7819
					J1453 + 1902
0 0 0000 0			• •• • •		J1455 – 3330
8 8 8668 868 8	668 688 688 688 68				J1600 - 3053
	88888888888888888888888888888888888888				
	8 88				J1614 - 2230
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 					J1640 + 2224
8 88 8888888888888888888888888888888888	888888888888888888888888888888888888888				J1643 — 1224
@0000000000000000000000000000000000000	CALLER CONTRACTOR	1990 1991 1992 1992 1992 1992 1992 1992		28//988 98/31480	J1713 + 0747
	8	8 8 8 8 8 8 8 8 8 8 8 8			J1738 + 033
					J1741 + 135
		88880000		A0/2100	J1744 – 113
88 800000000	88 888 888 888 888 888 888 888 888 888				
					J1747 - 403
					J1832 - 083
		C C C C C C C C C C C C C C C C C C C			J1853 + 130
Scale & direction		3668 68 6668888 68 666			B1855 + 09
	88			28/2188	J1903 + 032
8 8888 8888 8	888888888888888888888888888888888888888				J1909 - 374
	8 9999 9 8	388 8 8 8 8 8 8 8 8 8 8 8 8 8		28/2188	J1910 + 125
			• • • •	28/1480	J1911 + 134
88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8				881/1480	J1918 - 0642
		CEED C CEED	maasamb ii adii	28/1480	J1923 + 251
666 6 6				28//988	B1937 + 21
					J1944 + 090
		8888 800			B1953 + 29
	88 8				J2010 - 132
				48/4380	J2017 + 060
				20/430	J2017 + 000
		(700 C C C C C C C C C C C C C C C C C C		20/1480	J2033 + 173 J2043 + 171
	om 0 0 0 om	8888		A0/1400	J2145 – 075
56 8 3568 36	886 8 8 8 8 888			GBT/1400	12143 - 0750 12214 ± 3000
		88		AO/420	J2214 + 300
			• • • • • •	AC/1480	J2229 + 2643
			••••		J2234 + 061
			 22 • • 2		J2234 + 094
		-		SBT/848o	J2302 + 4442
	9999 99 9999 9	88 888		\$8/337	J2317 + 143
2004 2006	2000 2011	2012	2014		10 2010
2004 2006	2008 2010	2012	2014	Janear	/ 10 2019

Eleven-Year Residuals

J1713+0747



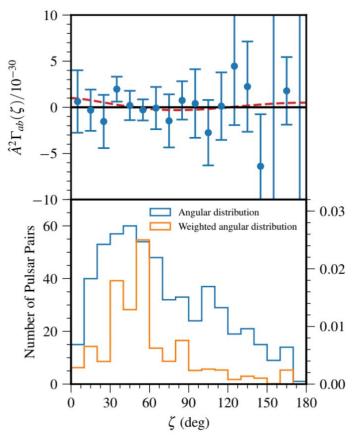
The NANOGrav Collaboration, ApJS, 235, 37

Eleven-Year Residuals

J1713+0747

The NANOGrav Collaboration, ApJS, 235, 37

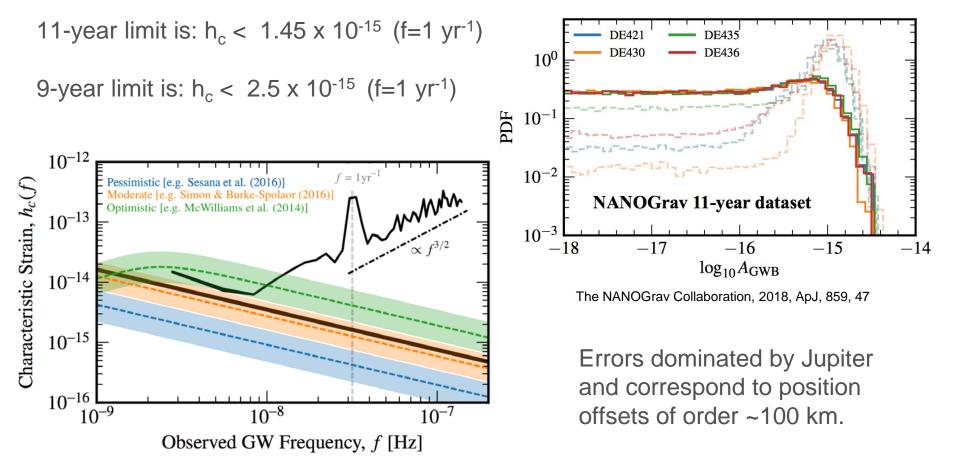
Eleven-year Stochastic Background Analysis



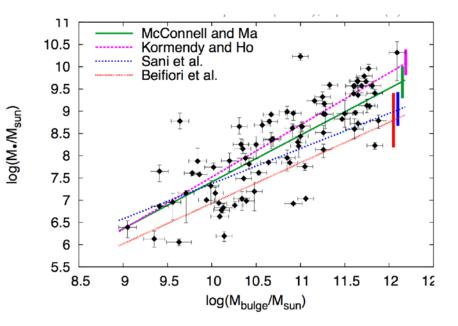
Used 34 pulsars with > 3 yrs of data.

Fit for three white noise and two red noise parameters.

New: modeled solar system ephemeris errors and set limits including spatial correlations.

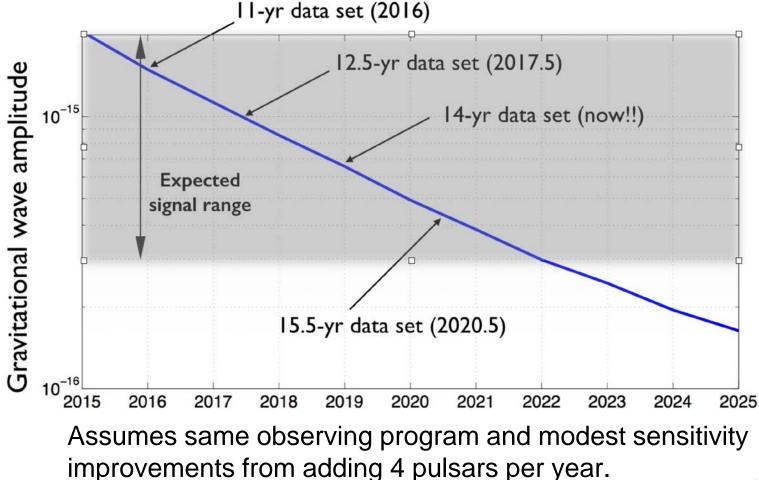

Code is publicly available!

The NANOGrav Collaboration, 2018, ApJ, 859, 47


Eleven-year Stochastic Background Analysis

We can set astrophysical constraints

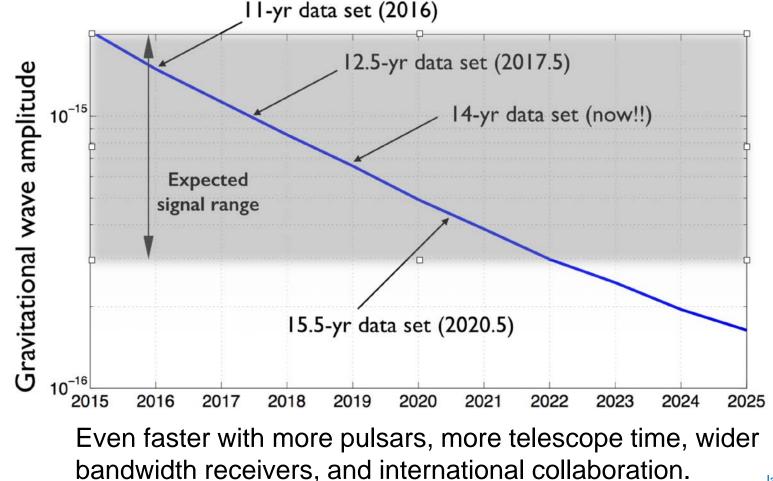
Simon & Burke-Spolaor, 2016, ApJ, 826, 1


$$\log_{10} M_{\bullet} = \alpha + \beta \log_{10} \left(\frac{M_{\text{bulge}}}{10^{11} \text{M}_{\odot}} \right)$$

 $\begin{array}{c} 0.75 \\ + 0.50 \\ 0.25 \\ - 0.25 \\$

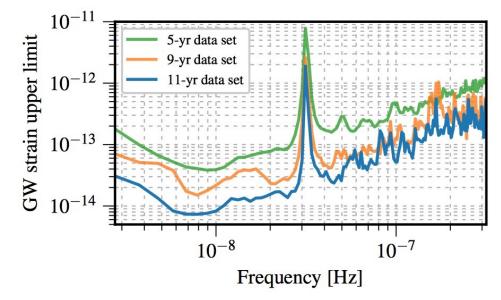
Can rule out astrophysical parameter space and place constraints on eccentricity, galaxybulge mass relationship, and galactic core mass density.

When we will make a SB detection?



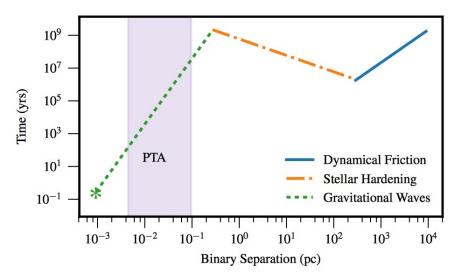
January 10 2019

When we will make a SB detection?


Continuous Wave Results

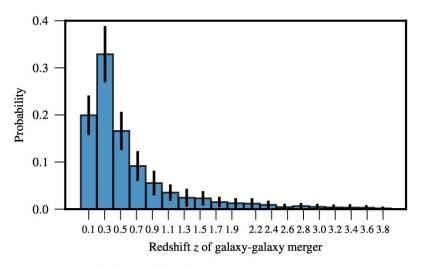
Sky-averaged limit of 7 x 10⁻¹⁵ (f=8 nHz)

Highly direction dependent!



No SMBHBs with M > 1.6×10^9 solar masses in Virgo.

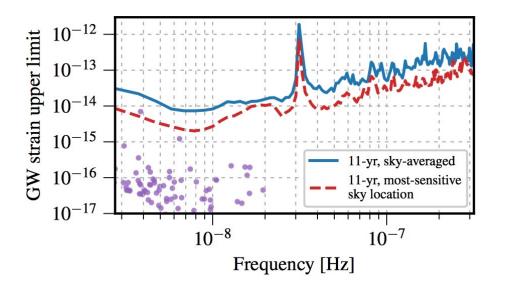
The NANOGrav Collaboration, 2018, arXiv:1812.11585


Future Prospects for MMA

Roughly 10% of galaxies stall, never making it to the GWdriven merger regime.

Mingarelli, et al. 2018, Nature Astronomy, 1, 886

Mingarelli et al. simulated the local Universe started with galaxies detected in 2MASS and taking merger rates from Illustrius.


(c) Redshift of parent galaxy mergers

January 10 2019

Future Prospects for MMA

A simulated realization of the local universe based on galaxies detected by 2MASS. In 34 out of 75,000 simulations are single sources detectable.

The NANOGrav Collaboration, 2018, arXiv:1812.11585

We expect a detection of at least one local merger within 10 years.