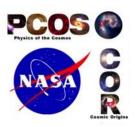


LISA Study Office

Ira Thorpe, NASA LISA Study Scientist

Gravitational Wave Science Interest Group Meeting Gaylord National Harbor January 8th, 2018


PCOS (Physics of the Cosms) CONTROL COSMS Cosmic Origins

What is a Study Office?

- A 'proto-project office'
 - Conducts early design studies
 - Coordinates technology development
 - Refines science case

NASA Life-Cycle Phases	FORMULAT Pre-Systems Acquisition		Implementation		IMPLEMENTATION ms Acquisition Operations		Decom- missioning
Project Life-Cycle Phases	Pre-Phase A: Concept Studies	Phase A: Concept and Technology Development	Phase B: Preliminary Design and Technology Completion	Phase C: Final Design and Fabrication	Phase D: System Assembly, Integration and Test, Launch	Phase E: Operations and Sustainments	Phase F: Closeout

Who is the LISA Study Office?

Astrophysics at NASA/HQ NASA PCOS

ESA Study Office

NASA LISA Study Team

Leadership

Horowitz (manager)
Thorpe (scientist)
Hornschemeier (dep. Scientist)
Rioux (systems engineer)

Core Team
Technology
Data Analysis
Astrophysics
Engineering

General Science Community

LISA Consortium

PCOS (C) Physics of the Cosmos COPY NASA COPY Capital Others

What we do: Mission Development

"ground-level" interface with ESA

- Regular telecons & frequent visits
- In parallel with HQ-HQ discussions

Support ESA & LISA Consortium

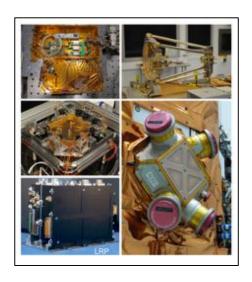
- Spacecraft Phase 0 study
- Payload Phase 0 study

Targeted technical analyses

- Phased array antennas for LISA communications
- NASA Deep Space Network utilization
- Mission analysis (orbits)

The Concurrent Design Facility (CDF) room at ESTEC during the LISA Phase 0 mission study.

PCOS (Physics of the County Co

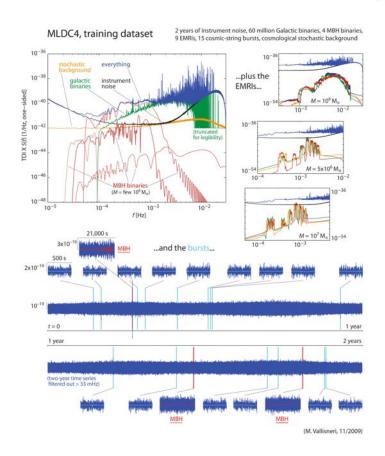

What we do: Technology Development

Manage development for potential US contributions

- Track development milestones
- Harmonize with ESA's requirements and schedule

Current activities

- Charge Management (UF)
- Colloidal Micropropulsion (JPL)
- Laser system (GSFC)
- Phase Measurement System (JPL)
- Telescope (GSFC)



The Concurrent Design Facility (CDF) room at ESTEC during the LISA Phase 0 mission study.

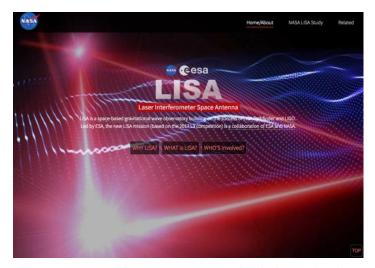
PCOS (Prysics of the Common Co

What we do: Science and Analysis

- Organize and support US participation in Core Data Science Activities
 - Instrument simulator
 - Data challenges
 - Development of proto-pipelines
 - Study of potential US contributions to ground segment / data centers / etc.
 - Close coordination with ESA & Consortium

Sample data set from the last "Mock LISA Data Challenge" of the prior LISA project.

What we do: Community Interface



Facilitate Study Team Activities

- Travel for US members on ESA's
 Science Study Team
- Travel/Logistics for NASA Study
 Team

Outreach

- New website
- Support for decadal preparation
- Support / facilitate activities of NASA Study Team / Consoritum

The revamped lisa.nasa.gov which launched this summer

Technology Development

History & Context

2001-2011

- Range of technologies developed under auspices of LISA project
- Project helped harmonize requirements, interfaces, etc.
- Examples: Microthrusters, Phasemeters, Stabilized Lasers, Metrology technologies, etc.

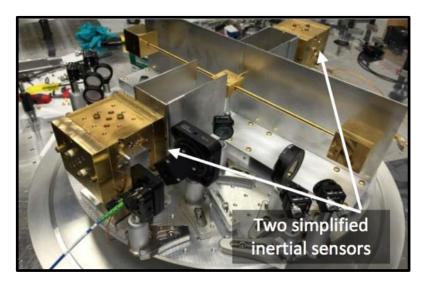
2011-2017

- PI-led activities
 - Lasers, telescopes, stable structures, frequency references, atom interferometry...
 - supported by competitive research funds
 - Requirements drawn from community
- other missions
 - Micropropulsion: ST7-DRS / LISA Pathfinder
 - Phasemeter: GRACE-FO LRI

• 2017-


Study office "consolidates" technology development

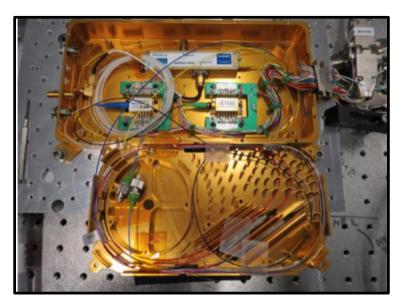
Philosophy of US Technology Development



- Develop full "menu" of possible US contributions
 - room for decision-makers to satisfy constraints and desires
 - Will need to downselect eventually
- Study Office coordinates interaction with European partners
 - Development and refinement of requirements and interfaces
 - Information from and feedback to mission design and development
- Guided by input from L3 Study Team (June 2016)
 - impact & insight
 - US heritage
 - Simplicity of interfaces & integration

Charge Management

- Lead: John Conklin, University of Florida
- Summary: Develop non-contact charge management system based on UV LEDs.
- Partnership Plan: US contribution to consortium
- Development Activities:
 Develop prototype, test on UF torsion pendulum facility and other facilities.



UF Torsion pendulum facility with simplified "GRS" for use in demonstrating charging at a system level. (Conklin).

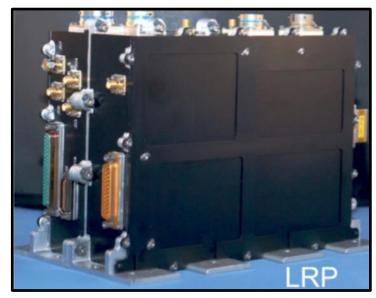
Laser System

- Lead: Tony Yu & Jordan Camp (GSFC)
- Summary: Develop stable laser system
- Partnership Plan: direct US contribution to ESA/consortium
- Development Activities:
 Develop prototype based on MOPA architecture. Trade on NPRO vs. ECL MO and fiber amplifiers. Partner with US industry as appropriate.

Prototype ECL-based laser system at GSFC (Numata/Camp/Krainak)

Micropropulsion

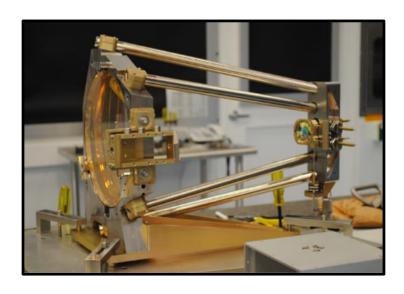
- Lead: John Zeimer, JPL
- Summary: Develop Colloidal Micronewton Thruster System building on ST7/LPF heritage and lessons learned
- Partnership Plan: US contribution to ESA
- Development Activities:
 Modify ST7 design to address
 lifetime and reliability and conduct lifetime tests.

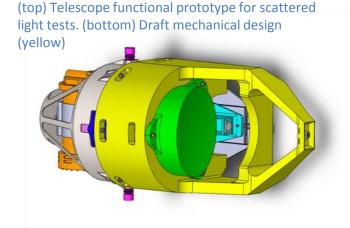


Colloidal Micronewton thruster cluster on LPF. (JPL/J. Zeimer)

Phase Measurement Systems

- Lead: Bill Klipstein, JPL
- Summary: Develop Phase
 Measurement System building on GRACE-FO/LRI and LISA heritage
- Partnership Plan: US contribution to consortium
- Development Activities: Reintroduce LISA functionality to GRACE-FO design. Conduct tests and develop prototypes.




Laser Ranging Processor (FM) for GRACE-FO LRI (JPL/Klipstein)

Telescope Systems

PCOS (Consist Origins Cosmic Origins

- Lead: Jeff Livas (GSFC)
- Summary: Develop and test LISA telescope system.
- Partnership Plan: US contribution to ESA/ consortium, possibly to include some I&T of related items.
- Development Activities:
 Design, purchase, and test telescope prototypes for dimensional stability and scattered light. Partner with US industry as appropriate.

