

Athena Status

and the X-ray Integral Field Unit

François Pajot and Didier Barret Institut de Recherche en Astrophysique et Planétologie

- How do baryons in groups and clusters accrete and dynamically evolve in the dark matter haloes?
- What drives the chemical and thermodynamic evolution of the Universe largest structures?
- What is the interplay of galaxy, supermassive black hole, and intergalactic gas evolution in groups and clusters?
- Where are the missing baryons at low redshift and what is their physical state?

Hot Universe

al. (2013) arXiv1306.2322

Reiprich et al (2013), arXiv: 1306.2319

- How do early supermassive black holes form, evolve and shape the Universe?
- -What is the role of (obscured) black hole growth in the evolution of galaxies?
- How do accretion-powered outflows affect larger scales via feedback?
- How do accretion and ejection processes operate in the near environment of black holes?

Energetic Universe

AGN outflows	Black hole winds	
Characterize ejecta, by measuring ionization state, density, temperature, abundances, velocities and geometry of absorption and emission features of the winds and outflows and determine how much energy these carry.	Probe outflow properties and disk magnetic fields in galactic binaries and in the same systems determine the relationship between the accretion disk and its hot electron plasma. Understand the interplay of the disk/corona system with matter ejected in the form of winds and outflows.	
$0.1 \qquad 0.05 \qquad 0.02 \qquad 0.01 \qquad 0.005 \qquad 0.02 \qquad 0.01 \qquad 0.005 \qquad 0.$	0.2 0.1 0.05 0.05 6 7 Energy (keV)	
Simulated ultra-fast outflow spectrum - Cappi, Done et al 2013, arxiv:	Disk wind spectrum of the stellar mass black hole GRS1915+105 -	

Barret et al. 2016 (courtesy J. Miller)

1306.2330

Didier Barret

(+)

- Second Large (L) mission of the ESA Cosmic Vision 2015-2035
- Launch year: end of 2028
 - with the newly developed Ariane 6 (64)
- A 7 ton spacecraft to be placed in a L2(L1) orbit
- Unprecedented collecting area in X-rays:
 - 2 m² at 1 keV and 0.17 m² at 7 keV
 - 5" angular resolution

- Two focal plane instruments with a movable mirror assembly
 - The Wide Field Imager (WFI) optimized for fine imaging and bright sources
 - The X-ray Integral Field Unit (X-IFU) optimized for high-resolution spectroscopy

Payload

Optics	Wide Field Imager	X-ray Integral Field Unit
Light-weight Si-pore optics	Active Pixel Sensors based on DEPFETs	Cryogenic imaging spectrometer, based on a large format of Transition Edge Sensors cooled at 50 mK with an active background shielding
	<image/>	
ESA & industry	Consortium led by MPE (K. Nandra), with other European partners and NASA	Consortium led by IRAP/CNES-F (D. Barret), with SRON-NL (J.W. den Herder), INAF/IAPS-IT (L. Piro) and other European partners, NASA and JAXA.

Functional block diagram

cnes

229th AAS Meeting, January 5th 2017, Grapevine, USA

Change of baseline cooling chain

Courtesy of C. Daniel et al.

229th AAS Meeting, January 5th 2017, Grapevine, USA

229th AAS Meeting, January 5th 2017, Grapevine, USA

- Athena and the X-IFU are progressing smoothly through phase A The delta MCR will lead to a baseline configuration for the overall system that will fit the 7 ton launch capability of Ariane 6
 - Joint optimization of the PL/SC components will certainly be needed
- International partner contributions to Athena (beyond those related to the P/L) need to be defined and agreed up and will clearly help in bringing the ESA CaC to within the cap
 - One option to be followed is the procurement of the PT coolers (or part of) for the revised cryogenic chain
- The NASA contribution to the X-IFU (TES array & expertise) is essential
 - Discussions on potential contributions to the X-IFU Instrument Science Center (part of the Athena SGS) should get started

Hold on and thank you for your support

The wealth of information provided by such a spectrum, that will High-z GRB afterglows probing the ISM composition at z>7-10 and be measured on sub-arc minute scales enables in depth studies of the hot cluster gas (e.g. temperature, bulk motion, abundance, ...) High-z GRB afterglows probing the ISM composition at z>7-10 and the density, turbulence, bulk motion, abundance, ...)

Barret et al. (2016) - Courtesy of L. Piro

courtesy of C. Pinto and A. Fabian

229th AAS Meeting, January 5th 2017, Grapevine, USA

