Lorentz Invariance and CPT Violation Studies with MeV Blazars and GRBs

Henric Krawczynski, Fabian Kislat (Washington University in St. Louis, Physics Department and McDonnell Center for the Space Sciences), 1/4/2015
1.) Motivation and Status of Observations.
2.) Theoretical Framework (the Standard Model Extension).
3.) The Next Frontier: Polarimetry at $>20 \mathrm{MeV}$ Energies.

Search for New Physics at the Planck Energy Scale

General Relativity
Quantum
Field Theories

Quantum Gravity
(avoid singularities of GR)

Observable Consequences:

$$
\Rightarrow \quad E_{P}=\sqrt{\hbar c^{5} / G} \approx 10^{19} \mathrm{GeV}
$$

Probe Physics at the Planck Energy Scale with Astronomical Observations

- Effects are suppressed by $\left(E_{\gamma} / E_{P}\right)^{n}$ with $n \geq 1$.
- Tiny Effects accumulate over cosmological distances (Colladay \& Kostelecky 1997, Amelino-Camelia+ 1998) \rightarrow sensitive tests with optical/UV to gamma-ray photons.

Gamma-Ray Time of Flight Measurements

Constrain time dispersion of photons with energies $E_{1} \& E_{2}$:

VERITAS, MAGIC, HESS, CTA.

$$
\delta v<\zeta^{(5) 0} \frac{E}{E_{P}}
$$

GRB 090510 (Fermi):

$$
\zeta^{(5)^{0}}<0.13
$$

(Vasileiou+2013)

Accuracy depends on:

- Photon statistics.
- Time scale of flares (msec to min).

Polarimetric Measurements

Group velocity depends on photon energy and helicity.

phase

Polarized UV/optical: $\delta v<\zeta^{(5) 0} \frac{E}{E_{P}} \quad \zeta^{(5) 0}<2 \times 10^{-7}$ (Fan+2007)
Limit from Polarimetry is by a factor $\sim 10^{6}$ "better"!

Theoretical Framework: Standard Model Extension (SME)

Kostelecký et al. (Colladay \& Kostelecký 1997,1998, Kostelecký \& Mewes 2002, Kostelecký 2004, Kostelecký \& Mewes 2009):

- The action of the Standard Model is the $0^{\text {th }}$-order term in an expansion approximating a more complete quantum gravity theory.
- Astronomical observations can constrain the non-zero contributions of non-standard-model operators in the Lagrangian.

$$
S_{(d)}=\int d^{4} x \mathcal{K}_{(d)}^{\alpha_{1} \alpha_{2} \alpha_{3} \ldots \alpha_{d}} A_{\alpha_{1}} \partial_{\alpha_{3}} \ldots \partial_{\alpha_{d}} A_{\alpha_{2}}
$$

Results:

Mass	Lor. Inv.	CPT	Photon	Polarization obs. constrain all expansion coefficients.
Dimension	Violation?	Violation?	Group Vel.	
$\mathrm{d}=5$	Yes	Yes	$\delta v<\Delta E$	
$\mathrm{~d}=6$	Yes	No	$\delta v<\Delta E^{2}$	

How good can we get?

Assumptions: (i) Detect GRBs at $\mathrm{z=1}$; (ii) Measure difference of arrival times of photons with energies 0.1 E and E with 1 msec accuracy.

How good can we get?

Assumptions: (i) Detect GRBs at $\mathrm{z=1}$; (ii) Measure difference of arrival times of photons with energies 0.1 E and E with 1 msec accuracy.

How good can we get?

Assumptions: (i) Detect GRBs at $\mathrm{z=1}$; (ii) Measure difference of arrival times of photons with energies 0.1 E and E with 1 msec accuracy.

Summary

- X-ray and gamma-ray timing and polarimetry observations have already been used to search for new physics at the Planck energy scale.
- The Standard Model Extension (SME) gives us a theoretical framework to parameterize the results and to relate different types of measurements to each other.
- Polarimetry gives the most sensitive constraints on the coefficients of mass-dimension 5 operators.
- The next frontier: polarimetric observations of blazars and GRBs at cosmological distances at >20 MeV energies can constrain the coefficients of mass-dimension 6 operators.
- Requirement: detection of $\sim 20 \%$ polarization degrees of Blazars and/or GRBs at $z^{\sim} 1$.

