

PHYSPAG JANUARY 2015 DARK ENERGY UPDATE

RACHEL BEAN (CORNELL UNIVERSITY)

Image Credit: ESA

A single survey can't give the full dark energy picture

- Trade offs in
 - Techniques (SN1a, BAO,RSD, WL, Clusters + lensing, peculiar motions, positions)
 - Photometric speed vs. spectroscopic precision
 - Angular and spectral resolution
 - Astrophysical tracers used (LRGs, ELGs, Lya/QSOs, clusters)
 - Epochs, scales and environs being studied (cluster vs dwarf galaxies)
- Much more than a DETF FoM:
 - Astrophysical & instrumental systematic control mitigation not so easily summarized.
 - Readiness vs technological innovation
 - Survey area vs depth repeat imaging, dithering, cadence and survey area overlap/config.
- WFIRST and Euclid are distinct and highly complementary, with each other and with
 - ground based LSS surveys (LSST, DESI and others)
 - Planck and ground-based CMB gravitational lensing measurements

PhysPAG meeting, HEAD, Seattle January 2015

Summary

Now & near term: e.g. DES, HSC; BOSS, eBOSS, PFS; J-PAS, JWST; Planck, ACT+, Spider, SPT+

Next generation	Euclid	WFIRST-AFTA	DESI	LSST
Starts, duration	2020 Q2, 7 yr	~2023, 5-6 yr	~2018, 5 yr	2020, 10 yr
Area (deg ²)	15,000 (N + S)	2,400 (S)*	14,000 (N)	20,000 (S)
FoV (deg ²)	0.54	0.281	7.9	10
Diameter	1.3	2.4	4 (less 1.8+)	6.7
Spec. res. $\Delta\lambda/\lambda$	250 (slitless)	550-800 (slitless)	3-4000 (N _{fib} =5000)	
Spec. range	1.1-2 μm	1.35-1.95 μm	360-980 nm	
BAO/RSD	~20-50M Hα ELGs z~0.7-2.1	$20m H\alpha ELGs$ $z = 1-2,$ $2m [OIII] ELGS$ $z = 2-3$	20-30m LRGs/[OII] ELGs 0.6 < z < 1.7, 1m QSOs/Lya 1.9 <z<4< td=""><td></td></z<4<>	
pixel (arcsec)	0.13	0.12		0.7
Imaging/ weak lensing (0 <z<2.)< td=""><td>30-35 gal/arcmin² 1 broad vis. band 550– 900 nm</td><td>68 gal/arcmin² 3 bands 927-2000nm</td><td></td><td>15-30 gal/arcmin² 5 bands 320-1080 nm</td></z<2.)<>	30-35 gal/arcmin ² 1 broad vis. band 550– 900 nm	68 gal/arcmin ² 3 bands 927-2000nm		15-30 gal/arcmin ² 5 bands 320-1080 nm
SN1a		2700 SN1a z = 0.1–1.7 IFU spectroscopy		$10^{4}-10^{5} \text{ SN1a/yr}$ $z = 00.7$ photometric 3

WFIRST: update

- AFTA SDT final report due this month
- Flexible observing strategy being considered
 - Deep in first 4 months on LSST deep drilling fields
 - To understand systematics in lensing and photometric redshifts
 - Cover 2200 sq deg to robustly tackle systematics, or 10000 sq deg H-band only and rely on LSST photo-zs, to aim for higher FoM but less control of systematics
 - Advantages of a big telescope can go in either direction
- Aim is 2023 launch, 2024-2028 observing

WFIRST: WFIRS2014 conference

- 210 registrants interested in broad science using WFIRST
 - Dark Energy
 - Exoplanetary
 - Milky Way + Local Group
 - Beyond the Local Group
- Lessons from current missions
 - Spitzer, Kepler, Hubble, Planck, WISE & Herschel

- Synergies with
 - Euclid, LSST, Gaia, JWST, VLASS, HSC, and others

WFIRST: ROSES WFIRST Preparatory Science

- Covered all areas of WFIRST science
 - including supernovae, galaxy redshift surveys, weak lensing, exoplanet microlensing, coronagraphy, and other surveys & GO science.
- Supporting development of WFIRST-centered simulations and models.
- 53 Proposals received on July 11 2014
- Selections have been made. Expectation (in November) was ~12 proposals to be funded, total \$1.8M in first year.

WFIRST: funding/support status

- FY14 appropriation (\$56M) and FY15 request (\$50M) supports technology development for detectors and coronagraph, and Agency/ Administration decision for formulation to begin FY 2017, should funding be available.
- Funds will also support assessment of the 2.4m telescopes, mission design trades, payload accommodation studies, and observatory performance simulations.
- NASA decision not expected on new start before early 2016

Euclid: NASA Science Center at IPAC

• NASA has established the Euclid NASA Science Center at IPAC (ENSCI) to support US-based investigations using Euclid data.

• ENSCI will

- Participate in the Euclid Consortium's Science Ground Segment to "learn by doing"
- Support the US research community by providing expert insight into the Euclid surveys, data processes, calibration, and products.
- Host an archive of detector characterization data

For more details, see http://euclid.caltech.edu

Euclid: instrument and US team updates

- Both instruments VIS (visible) and NISP (Near Infrared Spectrometer and Photometer) had successful reviews in the past year.
- Yun Wang is Deputy Lead for the Galaxy Clustering Work Group.
- Number of US Euclid team members now leading key work packages.
- Euclid scheduled for 2020 launch.

Some ground based updates

• DES:

• analyzing year 1 data

• HSC:

• taking data with 0.6 arcsec seeing.

• DESI:

- P5 report supports, "Build DESI as a major step forward in dark energy science, if funding permits"
- Passed DoE CD-1 in September

• LSST:

- August 1, NSF authorized construction with \$27.5M in FY14 and a budget plan through 2022 within a \$473M overall budget cap.
- highly ranked DoE P5
- Dark Energy Science Collaborⁿ

WFIRST and Euclid play critical roles in the advancement of our understanding of dark energy

- Theory has advanced, don't presume a strong theoretical prior a-priori
 - Data will be good enough to test beyond w=-1 or w0-wa
 - Investigate growth and expansion history, in a more general way
- Search for a diverse array of signatures:
 - Geometry and inhomogeneity across multiple epochs
 - Multiple tracers sampling distinct gravitational environments
 - Probe non-linear regimes (more modes + gravitational screening)
- Recognizes importance of complementarity
 - to maximize cosmological discovery and systematic control in realizing survey potential

