SUPERTIGER: PROBING GALACTIC CR ORIGINS

T. J. Brandt NASA / Goddard Greenbelt, MD

PhysPAG/CosmicSIG Washington, DC 5 Jan 2014

SuperTIGER Collaboration

W. R. Binns¹, R. G. Bose¹, D. L. Braun¹, T. J. Brandt², W. M. Daniels², G. A. de Nolfo²,
P. F. Dowkontt¹, S. P. Fitzsimmons², D. J. Hahne², T. Hams^{2,6}, M. H. Israel¹, J. Klemic³,
A. W. Labrador³, J. T. Link^{2,6}, R. A. Mewaldt³, J. W. Mitchell², P. Moore¹, R. P. Murphy¹,
M. A. Olevitch¹, B. F. Rauch¹, K. Sakai^{2,6}, F. San Sebastian², M. Sasaki^{2,6},
G. E. Simburger¹, E. C. Stone³, C. J. Waddington⁴, J. E. Ward¹, M. E. Wiedenbeck⁵

1. Washington University, St. Louis, MO 63130, USA

- 2. NASA/Goddard Space Flight Center, Greenbelt, MD 20771, USA
- 3. California Institute of Technology, Pasadena, CA 91125, USA
- 4. University of Minnesota, Minneapolis, MN 55455, USA
- 5. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
- 6. Center for Research and Exploration in Space Science and Technology (CRESST), Greenbelt, MD 20771, USA

Origins?

TIGER launch

Acceleration?

Propagation?

National Geographic

All-Particle CR Spectrum

Cosmic rays are: > charged nuclei from outer space (V. Hess, 1912) $\sim \begin{cases} \sim 90\% \text{ Hydrogen} \\ \sim 9\% \text{ Helium} \\ \sim 1\% \text{ Z} > 2 \end{cases}$

Spectrum falls as: $\rightarrow dF/dE \propto E^{-\alpha}$ $\Rightarrow \alpha \approx 2.7$ for $\sim 10^9 \text{ eV} < E < 10^{15} \text{ eV}$

Primary Nuclei Spectra

TIGER Results: 50 days' Data

- > good charge resolution:
- σ=0.23 ≻ ~10 Sr events (Z=38)
- > Continued even-odd effect => stellar origin
- Poor statistics at higher charges

Super-TIGER: > ~8.7x TIGER events

TIGER Results: 50 days' Data

TIGER Results: 50 days' Data

SuperTIGER Science Objectives

Primary objectives:

- > Determine origin of galactic CRs by
 - > measuring composition of CRs $26 \le Z \le 42$ with good statistics and individual element resolution
 - \succ making exploratory measurements to $Z\approx 56$
- > Test mass-dependent acceleration
- > Test the OB association source model for galactic CRs

Secondary objectives:

- > Measure energy spectra of CRs $10 \le Z \le 28$ with E = 0.3 - 10 GeV/nuc
- > Search for evidence of nearby microquasars

NASA, ESA, F. Paresce, R. O'Connell, & the HST WFC3HST SOC

Gemini Observatory, AURA, NSF

(Super-)Trans-Iron Galactic Element Recorder

> dE/dx \propto Z²/(1-n_i/ β^2)

Extract Z, β from combinations of Scintillator and Cherenkov signals

SuperTIGER Launch

Liftoff at 09:45 am NZDT Dec 9th, 2012—A perfect launch day!

Record-breaking 55 Day Flight!

SuperTIGER Flight

> SuperTIGER flew 55 days, 1 hr, and 34mins.

- > Failure of on-board solid state disks resulted in 44 equivalent days' data.
- > Record long-duration balloon flight for heavylift balloon!
 - > Previous record: CREAM I ~42 days
 - > NASA Super Pressure Balloon Test ~54 days

SuperTIGER Recovery

- SuperTIGER landed at 82°14.80'S, 81°54.72'W
- > On track for recovery in Jan 2014!

50 f

150 B

250 ft

350 E

- > Recovery crew arrived in McMurdo Jan 4, 2014.
- Will fly out, rdv w prep crew and payload, dismantle instrument, return, and pack & ship SuperTIGER to US for refurbishment.

Preliminary Results

> All events

> $\sigma_Z = 0.18$ charge units resolution at Fe (compared to ~ 0.23 for TIGER)

R. Binns et al. ICRC, Como 2013

> Events w Z > 30, analysis underway

> Expect improved resolution w better models of velocity and chargedependent scintillator saturation

HEAO-C2, TIGER, & Expected High-Z SuperTIGER Results

Expected SuperTIGER Results

First SuperTIGER flight increased statistics more than x4 TIGER:

- > 30Zn, 31Ga, 32Ge, 34Se, and 38Sr statistical uncertainties will be reduced by more than 2x
- > will have sufficient statistics to add data!
 - $> {}_{36}$ Kr (highly volatile)
 - > ₃₇Rb (moderately volatile)
 - $>_{40}$ Zr (refractory)

TIGER, HEAO, and expected SuperTIGER data:

Estimate heaviest nuclei assuming current 44 days' data + 60 days' from future flight(s)

Future Missions/Directions

≻ SuperTIGER II – 2015/6?

- > Increase statistics of current heavy (and bonus light) nuclei
- > Measure heaviest CRs yet
- ➤ Learn about CR origins, acceleration

>DragonTIGER/HNX/Similar concept – continuing development

- > Cherenkov and segmented Silicon/scintillator detectors with glass track detectors
- > Ideally space-borne (satellite, commercial launch vehicle, station, or ...)

> Indirect detection – leverage on-going experiments

- ▹ Fermi Gamma-ray Space Telescope, AGILE, ...
- > ACTs, e.g. H.E.S.S., VERITAS, ...
- ► HAWC, IceCube, ...

► Potential platforms:

- ► Balloons, inc. ULDB (2015+?); Sounding rockets; high altitude airplane flights
- Satellite; ISS; commercial launch vehicle
- ► Microsatellites, ...

Community cohesion and promotion combined with innovative ideas are likely our best chances for continued (improved?) funding to answer questions of CR origin, acceleration, and propagation.