JEM-EUSO Mission

Angela V. Olinto The University of Chicago

Current Observatories of Ultrahigh Energy Cosmic Rays

Telescope Array Utah, USA (5 country collaboration) 700 km² array 3 fluorescence telescopes

Pierre Auger Observatory Mendoza, Argentina (19 country collaboration) 3,000 km² array 4 fluorescence telescopes

The Pierre Auger Observatory

Argentina Australia Brasil **Bolivia*** Croatia Czech Rep. France Germany Italy Mexico **Netherlands** Poland Portugal Romania* Slovenia Spain UK USA Vietnam* *Associate Countries

~ 500 Scientists, 19 Countries

3,000 km² water cherenkov

- detectors array
 - 4 fluorescence Telescopes

Malargue, Argentina

Telescope Array

3 FD stations overlooking an array of

507 scintillator surface detectors (SD)

complete and operational as of ~1/2008.

Where do UHECRs come from?

Where do UHECRs come from?

UHECR Anisotropy Hints >60 EeV

Statistically limited evidence for Comic Ray Anisotropy above 5.7×10^{19} eV in the North and South

How many EECRs > 60 EeV?

Auger w/ 3,000 km² \sim 20 events > 60 EeV/ yr Telescope Array w/ 700 km² \sim 5 events > 60 EeV/ yr Auger + TA < 30 events/yr 30+ years to reach 1,000 Earth - surface ~ 5 10⁸ km²

 $\sim 3.4 \ 10^6 \text{ events/yr}$

How many EECRs > 60 EeV?

~3.4 10⁶ events/yr

Go to SPACE! To look down on the Atmosphere!

How many UHECRs > 60 EeV?

Auger + TA ~30 events/yr

JEM-EUSO ~200 events > 60 EeV/yr

Earth - surface ~ 5 10⁸ km²

~3.4 10⁶ events/yr

How many UHECRs > 60 EeV?

Auger + TA ~30 events/yr

JEM-EUSO ~200 events > 60 EeV/yr

Earth Sunace ~ 5 10⁸ km²

~3.4 10⁶ events/yr

JEM-EUSO Mission

Extreme Universe Space Observatory (EUSO in the Japanese Experiment Module (JEM) of the International Space Station (ISS)

POCKOCMO

Japan, USA, Korea, Mexico, Russia, Algeria Europe: Bulgaria, France, Germany, Italy, Poland, Slovakia, Spain, Switzerland, Sweden 15 Countries, 300 researchers Leading institution: RIKEN

PI: Piergiorgio Picozza

View from NASA: "Cosmic Ray Observatory on the ISS"

AMS Launch May 16, 2011

ISS-CREAM

Sp-X Launch 2014

JEM-EUSO goals

pioneer the study of EECR from Space
increase exposure to EECR by 1 order of magnitude
discover the nearby sources of UHECRs

JEM-EUSO Mission

Parameter	Value			
Launch date	2018			
Mission Lifetime	3+2 years			
Rocket	H2B or Falcon9			
Transport Vehicle	HTV or Dragon			
Accommodation on JEM	EF#9			
Mass	~1200 kg			
Power	926 W (op.) 352 W (non op.)			
Data rate	285 kbps (+ on board storage)			
Orbit	~400 km			
Inclination of the Orbit	51.6°			
Operation Temperature	-10° to +50°			

Full Sky Coverage with nearly uniform exposure

The ISS ORBIT

Inclination: 51.6° Height: ~400km

SpaceX Dragon

UV Telescope Parameters

Parameter	Value		
Field of View	±30°		
Monitored Area	>1.3×10 ⁵ km ²		
Telescope aperture	≥2.5 m		
Operational wavelength	300-400 nm		
Resolution in angle	0.075°		
Focal Plane Area	4.5 m ²		
Pixel Size	<3 mm		
Number of Pixels	≈3×10 ⁵		
Pixel size on ground	≈560 m		
Time Resolution	2.5 μs		
Dead Time	<3%		
Photo-detector Efficiency	≥20%		

Payload

Support Structure

Housekeeping

Simulation : Worldwide

Telescope Structure

BUS System : JAXA

Atmospheric Monitoring

Č.

Optics Rear Fresnel Lens

> Precision Fresnel lens

Front Fresnel lens

Iris

On-board Calibration

Ground Based Calibration

Ground Support Equipment

Payload

Rear Fresnel Lens

Precision Fresnel lens

Front Fresnel lens

Iris

On-board Calibration

Ground Based Calibration

Ground Support Equipment

Simulation : Worldwide

DLUM

Atmospheric Monitoring

cope Structure

System : JAXA

Telescope Scale

Focal Surface Detector

UV Telescope Parameters

Parameter	Value		
Field of View	±30°		
Monitored Area	>1.3×10 ⁵ km ²		
Telescope aperture	≥2.5 m		
Operational wavelength	300-400 nm		
Resolution in angle	0.075°		
Focal Plane Area	4.5 m ²		
Pixel Size	<3 mm		
Number of Pixels	≈3×10 ⁵		
Pixel size on ground	≈560 m		
Time Resolution	2.5 µs		
Dead Time	<3%		
Photo-detector Efficiency	≥20%		

FAST SIGNAL

duration 50 -150 µs

a) Fluorescence **Scattered Cherenkov**

80

GTU #

c) Nirect (diffusively reflected Cherenkov

Shower Simulation

Simulated air shower image on the focal surface detector.

Detected photoelectrons are recorded every Gate Time Unit (GTU) of 2.5µs continuously.

JEM-EUSO in USA Global Light System

Location	Latitude	Elevation	Location	Latitude	Elevation
Jungfraujoch (Switzerland)	47°N	3.9 km	Chacaltaya (Bolivia)	16° S	5.3 km
Mt. Washington (NH, USA)	44° N	1.9 km	La Reunion (Madagascar)	21° S	1.0 km
Alma-Ata (Kazakhstan)	44° N	3.0 km	Cerro Tololo (Chile)	30° S	2.2 km
Climax (CO, USA)	39° N	3.5 km	Sutherland (South Africa)	32° S	1.8 m
Frisco Peak (UT, USA)	39° N	2.9 km	Pierre Auger (Argentina)	35° S	1.4 km
Mt Norikura (Japan)	30° N	4.3 km	South Island (New Zealand)	43° S	1.0 km
Mauna Kea (HI, USA)	20° N	>3.0 km			
HAWC Site (Mexico)	19° N	3.4 km			

JEM-EUSO goals

- pioneer the study of EECR from Space - increase exposure to EECR by 1 order of magnitude
- discover the nearby sources of UHECRs

JEM-EUSO

Order of magnitue increase in Exposure

44

ZeV neutrino sensitivity

Strangelet Limits

Atmospheric Luminous Phenomena

Lightning picture observed from ISS OH airglow observed from ground

Leonid meteor swarm in 2001 taken by Hivison camera

Various transient airglows₄₇

EUSO PATHFINDERS

EUSO-Balloon (First flight Fall 2014) EUSO-TA (commissioning Spring 2014) Mini-EUSO (2015-16)

EUSO Balloon - pathfinder

Scheduled for flight Fall 2014

PI: P. von Ballmoos

O Biau 27

Laser and IR Camera

Testing EUSO-Balloon (US NASA APRA)

Fly one aircraft equipped with

two types of calibrated pulsed UV light sources.

Point Test: Fly airplane in field of view and fire **flash lamp**. Light travels directly from lamp to detector

Track Test: Fly airplane outside field of view and shoot a UV pulsed laser across field of view. Light scatters out of the beam to the detector. (5 mJ Laser ~100 EeV Cosmic Ray)

Fly aircraft at altitudes between 2,000 and 10,000 feet.

Calibrated UV laser Track Test

EUSO - Telescope Array

Mini EUSO

Figure 1 MINI-EUSO block scheme: Optical system with two Fresnel Lenses (25 cm diameter) focalizes UV light on a focal surface of 1 PDM, 36 multi-anode PMTS, total 2304 pixel

Russian window

American window

Focal Surface R&D

Imaging the Extreme Universe Solid-state cameras for Astroparticle Physics

May 9-10, 2013 - CHICAGO, USA

Imaging the Extreme Universe: Solid-state cameras for Astroparticle Physics

In the next decade, we can find the Sources of UHECRs from Space!!!

Showers in ~1 PDM

Next Generation GZK Neutrino Detectors

