S. Ronchini, M. Branchesi, G. Oganesyan, B. Banerjee, U. Dupletsa, G. Ghirlanda, J. Harms, M. Mapelli, F. Santoliquido

Ronchini et al. 2022, doi.org/10.1051/0004-6361/202243705 We acknowledge the INFN Computing Center of Turin for computational resources

Perspectives for multi-messenger astronomy with the next generation of gravitational-wave detectors and high-energy satellites

Goal of this presentation: Provide an exhaustive view about the **joint detection** of: 1. gravitational waves (GWs) 2. Electromagnetic counterpart in the high energy domain

from the coalescence of binary NS, in the era of 3G GW detectors

Redshift

Samuele Ronchini, Gran Sasso Science Institute

Overview

GW

EM

Points on which I will focus:

- Role of wide field instruments for the identification of the EM counterpart
- GW sky localisation
- For the follow-up, define a strategy to **prioritise the GW sources** with highest probability to have detectable EM emission
- Role of sensitive telescopes to characterise the multiwavelength emission

Method: from BNS mergers to short GRBs

Redshift distribution of BNS mergers from population synthesis model

Reliable predictions for future high-energy satellites

Samuele Ronchini, Gran Sasso Science Institute

The 3rd generation of GW detectors

From Chan et al. 2018

- 1. Unprecedented sensitivity which allows to have access to a yet unexplored region of the Universe, beyond the star formation peak time
- 2. Possibility to probe the early inspiral phase, relevant for a good estimation of the sky localisation, thanks to the exploitation of Earth rotation

Samuele Ronchini, Gran Sasso Science Institute

Einstein Telescope (ET)

Cosmic Explorer (CE)

GW Parameter estimation

- Based on **Fisher** matrix approximation
- Fast and computationally efficient

Joint detection of γ -ray emission and GWs

INSTRUMENT	band	$F_{ m lim}$	$FOV/4\pi$	loc. acc.	Joint ET	N_{ID}/N_{γ}	Joint (ET+CE)	N_{ID}/N_{γ}	
	MeV	$\mathrm{erg}~\mathrm{cm}^{-2}~\mathrm{s}^{-1}$			+γ-ray	- · JD7- · y	+γ-ray		
Fermi-GBM	0.01 - 25	0.5(*)	0.75	5 deg (^{<i>a</i>})	33^{+14}_{-11}	$68^{+13}_{-18}\%$	47^{+14}_{-14}	$95^{+5}_{-7}\%$	
Swift-BAT	0.015 - 0.15	2×10^{-8}	0.11	1-3 arcmin	10^{+3}_{-3}	$62^{+11}_{-14}\%$	13^{+5}_{-4}	$94^{+6}_{-7}\%$	
SVOM-ECLAIRs	0.004 - 0.250	1.792(*)	0.16	< 10 arcmin	3^{+1}_{-1}	$69^{+10}_{-9}\%$	4^{+1}_{-1}	$95^{+5}_{-4}\%$	
SVOM-GRM	0.03 - 5	0.23(*)	0.16	~ 5 deg	9^{+4}_{-3}	$59^{+6}_{-6}\%$	14^{+6}_{-4}	$92^{+3}_{-3}\%$	
THESEUS-XGIS	0.002 - 10	3×10^{-8}	0.16	< 15 arcmin	10^{+5}_{-4}	$63^{+13}_{-13}\%$	15^{+6}_{-4}	$94^{+6}_{-7}\%$	
HERMES	0.05 - 0.3	0.2(*)	1.0	1 deg	84^{+42}_{-30}	$61^{+10}_{-11}\%$	139^{+54}_{-36}	$94^{+6}_{-6}\%$	
TAP-GTM	0.01 - 1	1(*)	1.0	20 deg	60^{+24}_{-24}	$67^{+13}_{-14}\%$	84^{+30}_{-24}	95 ⁺⁵ ₋₆ %	

Fermi GBM+ET

Samuele Ronchini, Gran Sasso Science Institute

Fermi GBM+(ET&CE)

Joint detection of γ -ray emission and GWs

INSTRUMENT	band MeV	$F_{\rm lim}$ erg cm ⁻² s ⁻¹	FOV/4 π	loc. acc.	Joint ET $+\gamma$ -ray	N_{JD}/N_{γ}	Joint (ET+CE) $+\gamma$ -ray	N_{JD}/N_{γ}		
Fermi-GBM	0.01 - 25	0.5(*)	0.75	5 deg (^{<i>a</i>})	33^{+14}_{-11}	$68^{+13}_{-18}\%$	47^{+14}_{-14}	$95^{+5}_{-7}\%$		
Swift-BAT	0.015 - 0.15	2×10^{-8}	0.11	1-3 arcmin	10^{+3}_{-3}	$62^{+11}_{-14}\%$	13^{+5}_{-4}	$94^{+6}_{-7}\%$		
SVOM-ECLAIRs	0.004 - 0.250	1.792(*)	0.16	< 10 arcmin	3^{+1}_{-1}	$69^{+10}_{-9}\%$	4_1	95 ⁺⁵ ₋₄ %		Few b
SVOM-GRM	0.03 - 5	0.23(*)	0.16	~ 5 deg	9 ⁺⁴ ₋₃	59 ⁺⁶ ₋₆ %	14^{+6}_{-4}	$92^{+3}_{-3}\%$	X	loca
THESEUS-XGIS	0.002 - 10	3×10^{-8}	0.16	< 15 arcmin	10^{+5}_{-4}	$63^{+13}_{-13}\%$	15 ⁺⁶ ₋₄	94+6%		eve
HERMES	0.05 - 0.3	0.2(*)	1.0	1 deg	84^{+42}_{-30}	$61^{+10}_{-11}\%$	139^{+54}_{-36}	$94^{+6}_{-6}\%$		
TAP-GTM	0.01 - 1	1(*)	1.0	20 deg	60^{+24}_{-24}	$67^{+13}_{-14}\%$	84+30	$95^{+5}_{-6}\%$		

Fermi GBM+ET

Samuele Ronchini, Gran Sasso Science Institute

Fermi GBM+(ET&CE)

Joint detection of γ -ray emission and GWs

INSTRUMENT	band MeV	$F_{\rm lim}$ erg cm ⁻² s ⁻¹	FOV/4 π	loc. acc.	Joint ET $+\gamma$ -ray	N_{JD}/N_{γ}	Joint (ET+CE) $+\gamma$ -ray	N_{JD}/N_{γ}	
Fermi-GBM	0.01 - 25	0.5(*)	0.75	5 deg (^{<i>a</i>})	33 ⁺¹⁴ ₋₁₁	$68^{+13}_{-18}\%$	47^{+14}_{-14}	$95^{+5}_{-7}\%$	
Swift-BAT	0.015 - 0.15	2×10^{-8}	0.11	1-3 arcmin	10 ⁺³	$62^{+11}_{-14}\%$	13 ⁺⁵ ₋₄	$94^{+6}_{-7}\%$	
SVOM-ECLAIRs	0.004 - 0.250	1.792(*)	0.16	< 10 arcmin	3^{+1}_{-1}	69 ⁺¹⁰ %	4_1	$95^{+5}_{-4}\%$	Few b
SVOM-GRM	0.03 - 5	0.23(*)	0.16	~ 5 deg	9 ⁺⁴ ₋₃	$59^{+6}_{-6}\%$	14^{+6}_{-4}	$92^{+3}_{-3}\%$	loca
THESEUS-XGIS	0.002 - 10	3×10^{-8}	0.16	< 15 arcmin	10^{+5}_{-4}	$63^{+13}_{-13}\%$	15+6	$94^{+6}_{-7}\%$	ev
HERMES	0.05 - 0.3	0.2(*)	1.0	1 deg	84 ⁺⁴² ₋₃₀	$61^{+10}_{-11}\%$	139^{+54}_{-36}	$94^{+6}_{-6}\%$	
TAP-GTM	0.01 - 1	1(*)	1.0	20 deg	60^{+24}_{-24}	$67^{+13}_{-14}\%$	84+30	$95^{+5}_{-6}\%$	

Fermi GBM+ET

Samuele Ronchini, Gran Sasso Science Institute

Fermi GBM+(ET&CE)

ET

	ET	ET+CE	ET+20
N _{det}	143970	458801	59256
$N_{\rm det}(\Delta\Omega < 1~{\rm deg}^2)$	2	184	5009
$N_{\rm det}(\Delta\Omega < 10~{ m deg}^2)$	10	6797	15416
$N_{\rm det}(\Delta\Omega < 100~{ m deg}^2)$	370	192468	49381
$N_{\rm det}(\Delta\Omega < 1000~{\rm deg}^2)$	2791	428484	58531

Samuele Ronchini, Gran Sasso Science Institute

ET+CE

ET+2CE

ET

	ET	ET+CE	ET+2CE
N _{det}	143970	458801	592565
$N_{\rm det}(\Delta\Omega < 1~{\rm deg}^2)$	2	184	5009
$N_{\rm det}(\Delta\Omega < 10~{ m deg}^2)$	10	6797	154167
$N_{\rm det}(\Delta\Omega < 100~{\rm deg}^2)$	370	192468	493819
$N_{\rm det}(\Delta\Omega < 1000~{\rm deg}^2)$	2791	428484	585317

Samuele Ronchini, Gran Sasso Science Institute

ET+CE

ET+2CE

localisation capabilities

Detectability of the afterglow emission: survey vs pointing

How to detect X-ray emission:

- 1. In survey mode: probability ~FOV/4 π of detecting by chance the source
- 2. In **pointing mode**: selection of the sources with $\Delta \Omega$ $< 100 \text{ deg}^2$

	THESEUS-SXI	ТАР	Einstein Probe	Gamov
Energy band	0.3-5 keV	0.3-5 keV	0.5-4 keV	0.3-5 k
Field of view	0.5 sr	0.4 sr	1.1 sr	0.4 s

Number of BNS mergers / yr detected in GWs and X-rays

Survey mode

Pointing mode

	ET	ET+2CE
EP	50^{+15}_{-16}	64^{+12}_{-20}
Gamow	9^{+2}_{-2}	10^{+3}_{-3}
THESEUS-SXI	11^{+3}_{-3}	13^{+4}_{-3}
THESEUS-(SXI+XGIS)	23^{+6}_{-5}	27^{+7}_{-5}
TAP-WFI	16^{+3}_{-4}	17^{+6}_{-3}

	ET	ET+CE	ET+2CE
EP	9^{+5}_{-3}	294^{+80}_{-59}	359^{+168}_{-110}
THESEUS-SXI/	7+5	95 +43	1 22 +41
Gamow	′-3	75 -14	-23
TAP-WFI	8^{+5}_{-3}	182^{+43}_{-31}	225^{+76}_{-72}

Samuele Ronchini, Gran Sasso Science Institute

For 2-3 GW detectors active, pointing better than survey, but...

Caveats about pointing

	ET	ET+CE	ET+2CE		
EP	9 ⁺⁵ ₋₃	294^{+80}_{-59}	359^{+168}_{-110}		
THESEUS-S2	$XI/ _{7+5}$	05+43	122+41		
Gamow	/-3	93 –14	122-23		
TAP-WFI	8 ⁺⁵ ₋₃	182^{+43}_{-31}	225^{+76}_{-72}		
			100 s	1 hr	4 hr
	Einsteir	n Probe	359^{+168}_{-110}	48^{+24}_{-15}	17^{+15}_{-10}
	THESE	US-SXI/	122^{+41}_{-23}	12 ± 7	< 9
	Gumow				
	TAP-WFI		225^{+76}_{-72}	50^{+20}_{-10}	17^{+10}_{-5}

A **rapid response** is necessary to catch the brighter phase of the afterglow

Samuele Ronchini, Gran Sasso Science Institute

Following-up all the sources with $\Delta \Omega < 100 \text{ deg}^2$ is **unfeasible**

Other GW parameters should be exploited to restrict the selection:

- SNR
- Viewing angle and relative error
- Luminosity distance and relative error

The importance of WFX-ray telescopes

Joint γ-ray+GW detection efficiency (ET+Fermi-GBM)

Too off-axis to have a detectable γ -ray emission

Samuele Ronchini, Gran Sasso Science Institute

Redshift distribution of joint X-ray+GW detections, in pointing mode

The role of sensitive X-ray instruments

2. WFI: can carry out a mosaic of a sky region of ~10 deg² localisation provided by GW detectors

> ~5 joint detections per year, excluding cases with $\vartheta_v > 50^\circ$

Samuele Ronchini, Gran Sasso Science Institute

1. **X-IFU**: needs arcmin localisation, provided by WFX-ray telescopes

The totality of sources identified with WFX-ray monitors can be detected by X-IFU

~15 joint detections per year, excluding cases with $\vartheta_v > 30^\circ$

- compact binary mergers at cosmological distances
- ground-based telescopes
- Universe
- **GW+EM detection**
- detection of EM signal is higher

• The remarkable capabilities of next generation GW detectors will allow us to probe

• The existence of wide field X-ray and γ -ray monitors in the next decades will be crucial, in order to localise the EM counterpart and possibly the host galaxy with

• γ -ray telescopes are ideal to detect sources up to cosmological distances, while WFXray instruments are optimal for off-axis and sub-luminous events in the local

• Exploiting the localisation of GW sources (only with ET or also in synergy with other GW observatories, e.g. Cosmic Explorer) enhances the probability of having a joint

• It is necessary to define an optimal strategy to select GW events for which the

Thank you!

Samuele Ronchini, Gran Sasso Science Institute

Samuele Ronchini, Gran Sasso Science Institute

Backup slides

ET

	ET	ET+CE	ET+2CE				
N _{det}	143970	458801	592565		ET	ET+CE	ET+2CE
$N_{\rm det}(\Delta \Omega < 1~{ m deg}^2)$	2	184	5009	$N_{\rm det}(\Delta\Omega < 1{\rm deg^2})/{\rm N_{\rm det}}$	< 0.1%	< 0.1%	0.8~%
$N_{\rm det}(\Delta \Omega < 10~{ m deg}^2)$	10	6797	154167	$N_{\rm det}(\Delta\Omega < 10{\rm deg^2})/{\rm N_{det}}$	< 0.1%	2~%	26~%
$N_{\rm det}(\Delta\Omega < 100~{ m deg}^2)$	370	192468	493819	$N_{\rm det}(\Delta\Omega < 100{\rm deg^2})/{\rm N_{\rm det}}$	0.3~%	42~%	83 %
$N_{\rm det}(\Delta\Omega < 1000~{\rm deg}^2)$	2791	428484	585317	$N_{\rm det}(\Delta\Omega < 1000{\rm deg^2})/{\rm N_{\rm det}}$	2~%	93~%	99~%

Samuele Ronchini, Gran Sasso Science Institute

ET+CE

ET+2CE

ET

	ET	ET+CE	ET+20
N _{det}	143970	458801	59256
$N_{\rm det}(\Delta\Omega < 1~{\rm deg}^2)$	2	184	5009
$N_{\rm det}(\Delta\Omega < 10~{ m deg}^2)$	10	6797	15416
$N_{\rm det}(\Delta\Omega < 100~{ m deg}^2)$	370	192468	49381
$N_{\rm det}(\Delta\Omega < 1000~{\rm deg}^2)$	2791	428484	58531

Samuele Ronchini, Gran Sasso Science Institute

ET+CE

ET+2CE

