Explosive Transients: early moments

Gal-Yam et al. 2014, Nature

Avishay Gal-Yam

Department of Particle Physics and Astrophysics Weizmann Institute of Science

I. Arcavi

Collapsing massive stars are an important source of heavy elements, drive star formation, galaxy evolution

Massive stars are diverse

Mass Metallicity Rotation Magnetic field Binarity

SN-progenitor mapping and explosion mechanism are still open puzzles

First hours and minutes are key The birth of a supernova

Field of view is key for earliest times

ZTF goes widest though with coarser angular resolution.

ULTRASAT will have 4 times larger FoV

A Supernova's first day: shock breakout

Kepler's view (Garnavich et al. 2016)

A shock breakout flare from a standard star (but see Goldberg et al. 2022) provides a direct measure of the stellar radius at explosion

Such a plateau can be sampled >60 times by ULTRASAT

Kepler result is not as significant as initially reported, See Rubin & Gal-Yam 2017

Multi-visit strategies are required for intra-night discoveries

A. Ho

Optical alone does not robustly constrain R*, but does provide a measure of E/M, which is **0.85 10**⁵¹ per 10 Msolar ejecta (Rubin et al. 2016).

Early UV data can directly constrain progenitor and explosion properties

	Progenitor	R_s/R_{\odot}	$v_{s8.5}$	M/M_{\odot}	A_V
True value BVRI UBVRI UBVRI + UVOT UBVRI + ULTRASAT	RSG RSG RSG RSG RSG	$\begin{array}{r} 500\\ 355{1342}\\ 300{835}\\ 391{694}\\ 420{577}\end{array}$	$1.00 \\ 0.80 - 1.18 \\ 0.83 - 1.17 \\ 0.88 - 1.11 \\ 0.89 - 1.11$	$ \begin{array}{r}10\\5-20\\5-20\\5-20\\5-20\\5-20\end{array} $	$\begin{array}{c} 0.10\\ 0.00 & 0.36\\ 0.00 & 0.23\\ 0.04 & 0.21\\ 0.05 & 0.14 \end{array}$

A. Rubin

N. Ganot

Early UV data can directly constrain progenitor and explosion properties: previous work

N. Ganot I. Irani M. Soumagnac J. Morag

Early UV data can directly constrain progenitor and explosion properties: Swift + ground

Flash spectroscopy: map exploding star composition

Rapid spectroscopy is key!

Confined CSM

A shell of dense CSM around the progenitor suggests a preexplosion instability; need to change explosion model initial conditions?

A natural thermometer

A unique probe of shock cooling physics

Measuring the fraction of Unstable SN progenitors

IAU	Internal	Type	Redshift	Explosion	Error	First	Last non	First	Telescope/	Flash
name	ZTF		z	JD Date		detection	detection	$\operatorname{spectrum}$	instrument	
	name			[d]	[d]	$[d]^{a}$	[d]	[d]		
2018grf	18abwlsoi	SN II ^b	0.050	2458377.6103	0.0139	0.0227	-0.8725	0.1407	P60/SEDM	1
2018fzn	18abojpnr	${\rm SN}~{\rm IIb}^{\bf c}$	0.037	2458351.7068	0.0103	0.0102	-0.0103	0.1902	P60/SEDM	×
2018dfi	18abffyqp	SN IIb ^d	0.031	2458307.2540	0.4320	0.4320	-0.4320	0.6180	P200/DBSP	1
$2018 \mathrm{cxn}$	18 abckutn	$SN IIP^{e}$	0.040	2458289.8074	0.4189	0.0576	-0.0494	0.9406	P200/DBSP	×
$2018 \mathrm{dfc}$	18abeajml	$SN II^{f}$	0.037	2458303.7777	0.0118	0.0213	-0.9806	1.0153	P60/SEDM	1
2018fif	18abokyfk	SN II ^g	0.017	2458350.9535	0.3743	-0.0635	-1.0525	1.0525	P200/DBSP	1
2018 gts	18 a b v v m d f	SN II ^h	0.030	2458375.1028	0.5551	-0.4688	-1.3648	1.5162	P60/SEDM	1
2018 cyg	18abdbysy	SN IIP ⁱ	0.011	2458294.7273	0.2034	0.0297	0.0147	1.6727	WHT/ACAM	?
2018 cug	18abcptmt	SN II ^j	0.050	2458290.9160	0.0250	-0.0066	-0.0670	1.7960	P60/SEDM	1
2018 egh	18abgqvwv	$\mathrm{SN}~\mathrm{IIP}^\mathbf{k}$	0.038	2458312.7454	0.4351	0.9846	0.0931	1.8236	WHT/ISIS	?

Rachel Bruch Ph.D project, SNe II selected to have:

- Tight constraints on explosion time
- Early spectrum
- A confirmation spectrum

>50% of exploding massive stars are embedded in dense material

... and the distribution of material is often not spherical (M. Soumagnac)

Understanding the origin of the elements with ULTRASAT

ULTRASAT will:

- Survey 200 degree² every 300s
- Find >100 SNe/y in the FoV
- Resolve shock breakout flares
- Robust measures of shock cooling (progenitor radii) for a large sample

PI: Waxman

How do we see the elements?

INAF-led consortium: PI S. Campana; WIS-led visible arm (Ben-Ami, Rubin) - delivered 17

Design overview

- A visible spectrograph
- Waveband: 350-850nm.
- Band is divided to four quasi-orders to optimize gratings performance.
- Ion-etched gratings from iof-Fraunhofer (>80% efficiency) used at order m=1

	<i>u</i> -band	<i>g</i> -band	<i>r</i> -band	<i>i</i> -band
Passband [nm]	350 - 439.5	427 - 545	522 - 680	656 - 850

Single Camera for four bands

- The four bands feed a single catadioptric camera composed of three (!) aspheric surfaces
- Use highly transmissive glasses: fused silica and CaF2
- Images onto single detector
- Inspired by the camera for VLT/MOONS

Thanks