Comparing Type Ia Supernovae in the Ultraviolet and Optical
Yaswant Devarakonda and Peter Brown
Mitchell Institute for Fundamental Physics and Astronomy, Texas A&M University

Background

Type Ia supernovae (SNe Ia) have been well studied in the optical and IR, however their UV properties remain relatively unexplored. This is partially due to the expected blanketing of Fe-group absorption lines in the UV, which could make light curve standardization difficult. And as both Hubble and the Swift telescopes are past their intended lifespans, there may soon be no options available for time-domain UV observations.

We analyze UV and optical SNIa light curve properties of 97 SNe Ia from the Swift Optical/Ultraviolet Supernova Archive (SOUSSA, Brown et al. 2014), covering a range of 1,700-6,500 Å. Our initial studies show remarkable potential for science in the UV regime that could be explored with future time-domain observatories. Here we focus on the signs of SNe Ia progenitors through shock emission and the usefulness of the UV for cosmological studies.

UV/Optical Cosmology

There is no statistical difference in the diversity of light curve shapes of SNe Ia in the UV or optical (Devarakonda & Brown 2022). In addition, there is a strong statistical relationship between the shape parameters, particularly in the near peak decline rate. While the intrinsic UV luminosity may be more diverse than the optical luminosity, the addition of UV observations may add useful constraints for optical standard candle measurements. This will be particularly helpful for high redshift sources, whose rest-frame UV emission will be observable by ground based optical instruments.

References

Devarakonda, Y. & Brown, P. J. 2022, AJ, 163, 6

Acknowledgements

We’d like to thank Nicholas Sunzett, Lauren Aldoroty, and Jiawen Yang for their help. This project was supported by NASA's Astrophysics Data Analysis Program. Data was obtained with the Ultra-Violet/Optical Telescope on the Neil Gehrels Swift Observatory.

Conclusion

We examine 97 SNe Ia in the UV and optical (the largest such sample to date) and find no statistical difference in the diversity of the light curve parameters related to the decline rate and stretch. In addition, we find strong correlation between the near-peak decline rate and stretch related parameters between the UV and the B band. These relations can add useful constraints for future multi-band studies of SNe Ia, particularly those with limited observations or at higher redshifts. The UV may also provide useful information on the possible progenitors and the explosion physics of SNe Ia.

To capitalize on the potential of the UV, future facilities will require a number of advancements. SNe Ia are inherently fainter in the UV relative to the optical, and the available UV transmission filters are far less efficient than in the optical. As a result UV detectability remains a major issue that will need to be addressed. Rapid follow-up capabilities will be required to detect progenitor signatures near the explosion date. Finally, compatibility with the planned UV/optical/IR flagship mission recommended in the 2020 decadal will need to be considered.