

AEGIS An Astrophysical Experiment for Grating & Imaging Spectroscopy

Mark Bautz

MIT Kavli Institute for Astrophysics & Space Research For the AEGIS Team

Aegis Collaborators

- G. E. Allen D. N. Burrows B. Costello D. Evans D. P. Huenemoerder C. Lillie J. M. Miller S. L. O'Dell M. L. Schattenburg G. Vasudevan
- J. Bookbinder C. R. Canizares J. E. Davis A. Falcone S. Jordan M. Loewenstein R. Mushotzky F. Paerels N. Schulz D. Wang
- D. Bower S. Casement D. Dewey K. Flanagan A. Klavins in H. L. Marshall T. Nguyen R. Petre R. K. Smith S. Wolk
- J. Bregman D. Chakrabarty J. J. Drake R. K. Heilmann J. C. Lee S. Mathur F. Nicastro A. Ptak D. Tenerelli

W. W. Zhang

- N. Brickhouse
- K.-W. Chan
- M. S. Elvis
- J. C. Houck
- J. Lempke
- R. S. McClelland
- M. A. Nowak
- T. T. Saha
- R. Vanbezooijen

14 December 2011 PCOS Workshop M. Bautz

Overview

- AEGIS Overview
- RFI Questions Addressed by AEGIS
- Broader Aegis Science
- AEGIS Instruments
- AEGIS Mission

A dedicated soft X-ray grating spectroscopy mission with:

5

A dedicated soft X-ray grating spectroscopy mission with:

C VI

XMM-Newton RGS

Chandra Gratings

30

ÆGIS

3mÅ (Fx~3.5x10⁻¹²cgs; 100 ROSAT blazars avail.)

10mÅ (Fx~10⁻¹¹cgs; 25 ROSAT blazars avail.)

25

Wavelength (A)

A dedicated soft X-ray grating spectroscopy mission with: Ne IX OVIII OVII NVII N VI

100

10

10

- High throughput 3 ★ A_{eff} ~1400 cm²,0.5 keV 1000 لِّ ★ ~100x Chandra HETGS Resolving Power x Effective ★ ~2x Chandra ACIS!
- High resolution ★ R = 1 /⊗ > 3000
 - ★ >~30x calorimeter at 0.5 keV
- Moderate Cost
 - ★ RFI Medium (~\$760M)

14 December 2011 PCOS Workshop M. Bautz

Approved for public release; distribution unlimited.

5σ detection,

15

500 ksec observation assumed

20

35

40

Aegis Science Overview

- Aegis outperforms the IXO grating (XGS)
- Aegis addresses 3 RFI questions:
 - * How does large scale structure evolve?
 - * What is the connection between SMBH formation and evolution of LSS (cosmic feedback)?
 - * How does matter behave at very high density?
- Aegis addresses a broad range of other science highly-ranked by Astro2010

14 December 2011 PCOS Workshop M. Bautz

How does large-scale structure evolve?

Aegis approach:

 Detect & characterize the warm-hot IGM (WHIM) via absorption spectroscopy

Aegis approach:

- Detect & characterize the warm-hot IGM (WHIM) via absorption spectroscopy
- Select from ~100 blazars with $F_x > 4 \times 10^{-12} \text{ erg s}^{-1} \text{ cm}^2$ & z > 0.1 for backlights

MiCosmic Feedback

What is the connection between SMBH formation & evolution of large-scale structure?

Aegis approach 1:

- Measure outflows of mass & energy from AGN→ constrain impact on galaxies & environs
- Infer AGN wind density & velocity from ionization changes on short (~5 ks) timescales $(t_{eq} \rightarrow n)$
- Large A_{eff} probes shorter timescales→closer to SMBH

14 December 2011 PCOS Workshop M. Bautz

MiCosmic Feedback

What is the connection between SMBH formation & evolution of large-scale structure? Aegis approach 2:

- Search Milky Way halo & local group (LG) to trace 'missing' Galactic baryons
- Use absorption lines from halo, LG in spectra of background AGN
- Velocities distinguish halo and LG components
- >200 sightlines observable in 10 Ms (many 'for free')

14 December 2011 PCOS Workshop M. Bautz

Approved for public release; distribution unlimited avelength (A)¹²

MiCosmic Feedback

What is the connection between SMBH formation & evolution of large-scale structure?

Aegis approach 2:

- Search Milky Way halo & local group (LG) to trace 'missing' Galactic baryons
- Use absorption lines from halo, LG in spectra of background AGN
- Velocities distinguish halo and LG components
- >200 sightlines observable in 10 Ms (many 'for free')

14 December 2011 PCOS Workshop M. Bautz

Matter at High Density

How does matter behave at very high density? Aegis approach:

- Measure neutron star M/R, M/R² from burst spectra
- Photospheric Fexxv & FexxvI Balmer features could yield gravitational z (M/R) if N_{Fe} ~ 10¹⁷ cm⁻²
- Stark-broadening, e.g. of OVIII, could yield M/R²
- Sample of 10 observable in
 5% of Aegis mission time

• NB: Aegis's count-rate capability >~100x Chandra @ 24 A

14 December 2011 PCOS Workshop M. Bautz

Mi

Broader Aegis Science Program

- Aegis brings high-resolution X-ray spectroscopy to bear on many other astrophysical questions:
- Kinematics & composition of gas & dust in the ISM
- Accretion kinematics in young stars & proto-planetary disks
- Physics of stellar coronae
- Accretion, jets & winds in X-ray binary systems
- Nature & physics of neutron star atmospheres
- Distribution of metals in the Milky Way & other galaxies
- Flows of matter, energy around AGN from pc to kpc scales
- Cooling, heating & kinematics in galaxy cluster cores

- Aegis technology development supported by NASA ARA, SAT
- Expect readiness for Aegis new start by mid-decade

Component	Current TRL	Development Status & Plans	
Mirror	4	*Single mirror-pairs meets LSF requirement *Expect TRL 5 by end of CY2012 *See Zhang talk, this workshop	
CAT Grating	3	*Period, aspect ratio meet requirements *High-efficiency supports now in development *Expect TRL 4 end of CY2012 *See Heilmann talk, this workshop	
Detectors	5	*BI Suzaku CCDs meet all req'ts but readout speed *Non-Xray CCDs show required speed *Integral OBF now in development *High-performance APS a promising future option	

Aegis Technology

- Aegis technology development supported by NASA ARA, SAT
- Expect readiness for Aegis new start by mid-decade

• Single mirror-pairs surpass 3" LSF

CAT gratings have required period (200nm) and aspect ratio (150:1)
High-throughput, hierarchical support structures demonstrated

Aegis Mission

- Moderate size (1090 kg), conventional spacecraft, Falcon-9 launcher
- L2 orbit provides >70 (115) Msec of onsource observing time in 3 (5) year mission (3.5x-6x IXO grating program)
- Open competition for all observing time
- Costing assumes efficient Swift operations model, includes robust science and GO support

14 December 2011 PCOS Workshop M. Bautz

Aegis Mission Characteristics

Parameter	Value	Units	Remarks		
$Payload^1$					
Mass	325	kg			
Power	250	Ŵ			
Telemetry	128/1280	kbps	avg./peak		
Spacecraft ¹					
Mass	385	kg			
Power	320	W			
Pointing	30	arcsec	max. deviation		
control			(200 ks)		
	1	arcsec s ⁻¹	max. drift rate		
Pointing	1.3	arcsec	3σ per axis		
knowledge					
$Observatory^2$					
Mass	1090	kg	at launch		
Power		0			
Total	740	W			
Capability	1330	W	EOL		
Margin	590	W	44% EOL		
Telemetry	208	kpbs	average		
Recorder	24	Gbyte	12.7 days		
Mission					
Launcher					
Vehicle	Falcon-9		std. fairing		
Capability	2010	kg	to L2		
Margin	920	kg	46%		
Orbit	L2		Sun-Earth		
Duration					
Prime	3	yr			
Goal	5	yr			
Comm.	1	day ⁻¹	DSN		

Aegis deployed

Aegis in Falcon-9 Standard Fairing

Ball Aerospace graphics

14 December 2011 PCOS Workshop M. Bautz

Summary

- High-resolution grating spectroscopy is indispensable in addressing NWNH science
- Aegis can provide, at moderate cost, highresolution grating spectroscopy with:
 - * 30-100x better performance than we have now
 - * Higher performance than IXO XGS
 - * 3x-6x more grating observing time cf IXO XGS
- A NASA mission with grating spectroscopy is essential:

No other space agency in the world will do it.