Workshop on X-Ray Mission Architectural C oncepts

December 14-15, 2011

ADR Options for Future X-Ray Missions

Peter Shirron NASA/GSFC

Detector Cooling Requirements

- Required temperatures and cooling power
 - Detector cooling: 50 mK (lower?), 2-5 μW
 - Amplifiers, heat intercept for detector wiring: 1-4 K, ~1 mW or more

Heat sink temperature

- Cryocoolers will be used to provide cooling to <5 K
 - Long life

eesa Jaka

NASA

- Support warm launch concepts
- Avoids complexity and risks of stored-cryogen systems

Flight Cryocoolers	Cryocooler Type	Cryocooler Capability
Sumitomo Heavy Industries	Joule-Thomson with Stirling pre-coolers	1.7 K, 10 mW or 4.5 K, 40 mW
Ball Aerospace, Northrup Grumman, Lockheed- Martin, Creare	JT with Stirling, JT with Pulse tube, Pulse tube, Turbo- Brayton	4-5 K, 30-40 mW

Cooler Options

- Low Temperature cooler options (flight)
 - ³He sorption cooler
 - Dilution refrigeration (open cycle)
 - Adiabatic demagnetization refrigeration
- Can consider hybrid combinations

Demonstrated capability >200 mK 100 mK <20 mK

But...

- ADRs are considerably more efficient than other options, and can span the range from <20 mK to >5 K
- ADRs are more efficient than cryocoolers over the same temperature range
 - From system perspective, it is advantageous to use ADRs over widest possible temperature range

ADR Basics

Magnetocaloric effect

 Increasing magnetic field causes the refrigerant to warm up or give off heat; decreasing field causes it to cool down or absorb heat

ADR Architectures for 5 K Operation

Single-shot Operation

Benefits

- Very stable temperatures during hold time
- Each stage is a heat intercept for leads, etc.
- Low magnetic fields present during detector operation

Drawbacks

Limited cooling power or large mass (or both)

ADR Architectures for 5 K Operation

Continuous Operation

Benefits

- Continuous cooling at two temperatures
- High cooling power per mass
- High efficiency
- Low peak heat rejection rate

Drawbacks

NASA

esa 4*A

Fluctuating magnetic fields and temperatures during detector operation

3-Stage ADR for Astro-H

esa 🖽 🛪

NASA

3-Stage ADR for Athena (reconfigured Astro-H ADR)

- Designed for 2 µW detector load at 50 mK
- Peak heat rejection rate of 20 mW at 4.5 K
- 15 kg total mass

esa 🏒

NASA

- Recycle time of <2 hours
- Hold time of >30 hours
- Duty cycle of >94%

4-Stage CADR Prototype

- Development funded by NASA targeting Constellation-X needs
 - 5 μ W detector load at 50 mK, with 100% margin
 - Maximum heat rejection rate of 10 mW at 4.5 K

- Stage 1 works to stabilize detector temperature at 50 mK
- Upper stages work to cascade heat to the heat sink

Prototype 4-Stage CADR

eesa 🦽 🗶

NASA

- Up to 5 K heat sink
- Total mass of 7.7 kg
 - 1: 40 g CPA, 0.2 T
 - 2: 100 g CPA, 0.5 T
 - 3: 100 g CPA, 1.5 T
 - 4: 60 g GLF, 4 T
- Operation is fully automated

4-Stage Cycling

Demonstrated Cooling Power and Efficiency

- Peak heat rejection at 4.5 K is 8 mW
- Cooling power represents available cooling above internal parasitics

6 μW

5-Stage Prototype

Funded by GSFC IRAD

Development is on-going

2 stages cool continuously to ~1 K (~15 minute cycle)

3 stages cool continuously to 50 mK (~15 min cycle)

Cryocooled heat sink at 4-5 K

1 K shield (removed for assembly)

esa 🐙 🐼

Summary

- ADR technology is well suited to requirements for future x-ray missions using low temperature detectors
- Different architectures have been implemented
 - Single-shot ADR
 - Requires minimum of 2 stages, but 3 stages provides greater cooling power and less mass
 - More conventional
 - Requires very little development from current state
 - Continuous ADR
 - Requires 5 stages to achieve 2 fixed temperatures
 - Highest cooling power
 - Most efficient
 - Lowest heat rejection rate most compatible with cryocooler capabilities
 - Requires some development to reach TRL 6
 - » Temperature stability of coldest stage