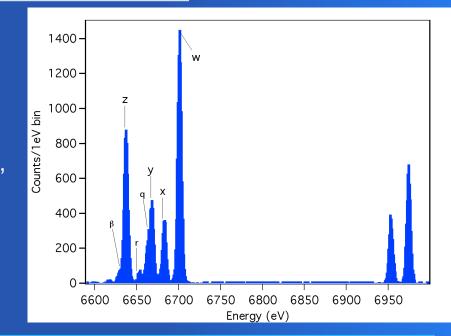
Workshop on X-ray Mission Architectural Concepts


Linthicum, MD December 14-15, 2011

Enabling Technologies for the High-Resolution Imaging Spectrometer of the Next NASA X-ray Astronomy Mission – Options, Status, and Roadmap

Caroline Kilbourne NASA Goddard Space Flight Center

S. Bandler¹, J. Chervenak¹, W.B. Doriese¹, G. Hilton², K. Irwin², R. Kelley¹, F.S. Porter¹, C. Reintsema², J. Ullom²

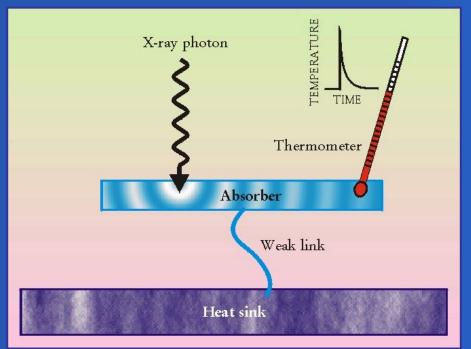
¹Goddard

²NIST

X-ray Missions Workshop – December 14-15, 2011

Outline

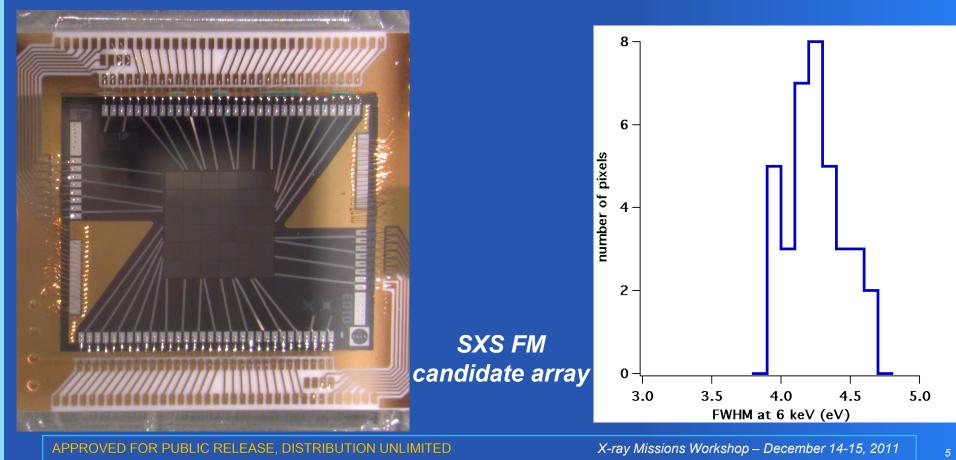
- Why high-resolution detectors are low-temperature detectors
- Leading technologies
- Multiplexed read-out
- Technology roadmap


High-resolution imaging spectroscopy requires low-temperature detectors

Non-equilibrium:

- Energy creates quantized excitations (E >> kT)
- Number of excitations proportional to E
- Fano-limited resolution
- •Low temperature required to avoid thermally generated excitations Equilibrium:
- •Sensor is in thermal equilibrium ΔT proportional to $\Delta E/C$
- Low-temperature needed to minimize thermal fluctuations and lower C

** For eV-scale resolution, T < ~ 0.1 K is required. **

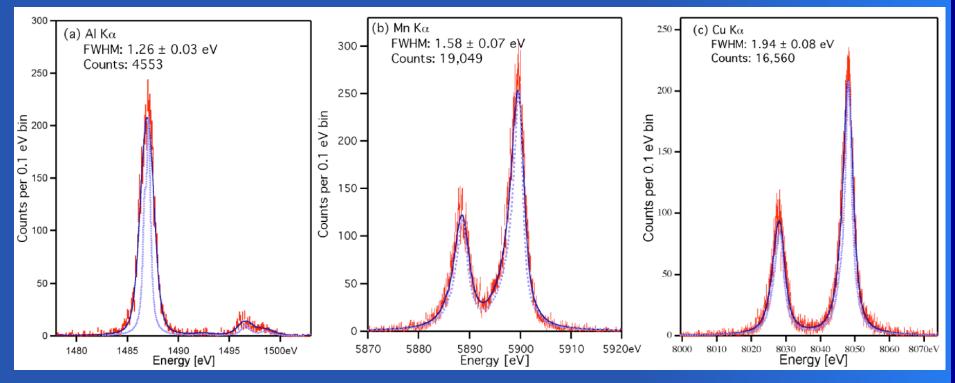

Highest resolution demonstrated with equilibrium devices (microcalorimeters)

- Thermometers can be based on: resistance, capacitance, inductance, paramagnetism, magnetic penetration, electron tunneling ...
- The leading technologies:
 - Resistance (semiconductor thermistors and resistive transition of superconductors)
 - Magnetically coupled calorimeters

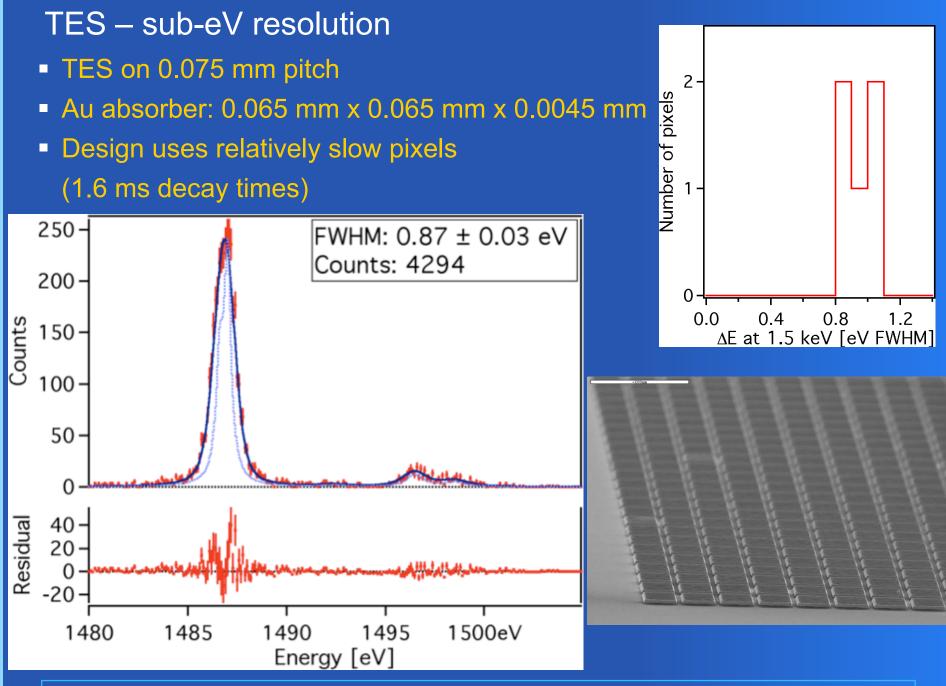
Silicon thermistor-based calorimeter array for Astro-H

- Base temperature of 50 mK
- 36 pixels silicon thermistors on 0.83 mm pitch with HgTe absorbers
- Resolution at 6 keV ranges from 3.6 4.6 eV across EM and FM arrays
- Lack of large-scale read-out technology limits arrays to a few hundred pixels
 - Further investment warranted if technique for multiplexing is demonstrated

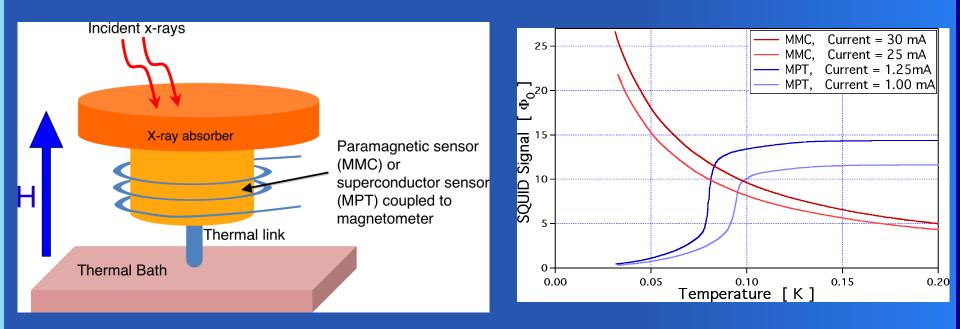
Transition-edge sensors (TES) – IXO/XMS baseline


- Temperature and current dependence of the transition from the zeroresistance to normal-resistance state used for thermometry
- XMS reference design based on GSFC TES design
 - Membrane-isolated Mo/Au TES with $T_c \sim 90$ mK, (base temperature at 50 mK)
 - Electroplated Bi/Au absorbers, 0.25 0.30 mm pitch
 - 1.8 eV resolution demonstrated, 2 3 eV routine in this design
 - Multiplexed SQUID read-out close to requirements for few-thousand pixel array
 - 32x32 arrays with microstrip leads successfully fabricated

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED


TES – smaller pixels

- Small pixels suited to shorter focal lengths and/or higher spatial resolution
- In small TES devices, T_c depends sensitively on current extends linear operating range of pixels
- Don't need membrane isolation; small size limits coupling to solid substrate
 - Heat sinking of solid substrate minimizes thermal crosstalk
- Through choice of T_c, can be optimized for speed or resolution.

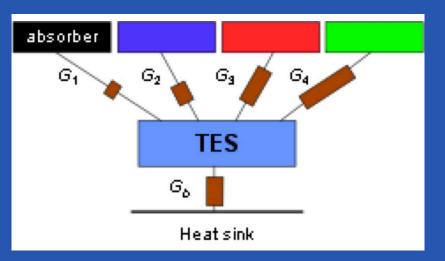


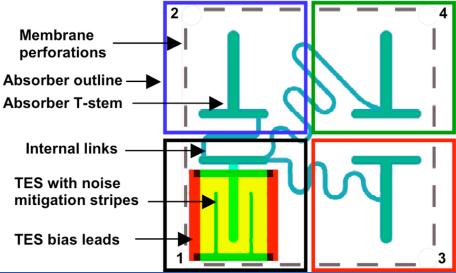
0.057 mm pixel with 0.03 ms time constant

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

Inductive thermometers – using temperature dependence of paramagnetism or magnetic penetration of a superconductor

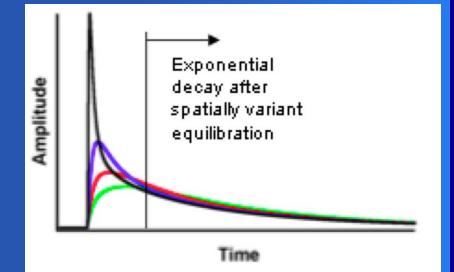
 Arrays of Nb meanders with layer of magnetic material (Au:Er) or a low-Tc superconductor (Mo/Au)


- change of magnetization measured as change of inductance
- The Heidelberg group has achieved just better than 2.0 eV resolution at 6 keV with a Au:Er metallic magnetic calorimeter (MMC)
- GSFC group recently obtained 2.3 eV resolution with Mo/Au magnetic penetration thermometer (MPT).


Magnetically coupled calorimeters (MCC) compared with TES

- MCCs are intrinsically dissipationless
 - very large-format focal-plane arrays
- MCC sensor material is electrically isolated
 - can be directly connected to metallic heat sink simplifying reduction of thermal crosstalk
- Dissipation in TES calorimeters allows electrothermal feedback
 - stabilizes operating temperature, relaxing temperature stability required at heat sink
- TES read-out allows easy signal filtering, simplifying multiplexing.

Each has advantages and disadvantages – parallel investment in both TES and MCCs is recommended


Using the non-equilibrium signal in equilibrium devices for position discrimination

 Multiple absorbers connected thermally to the same thermometer via different thermal links
 Demonstrated for TESs and MMCs

2.6 eV resolution obtained in 9-pixel TES device with 0.065 mm pixels
Ideal "hydra" obtains somewhat worse resolution than for one big pixel of the same area due to thermal fluctuations between the absorbers

Superconducting Non-equilibrium Detectors

- X-ray energy breaks Cooper pairs in a superconductor into quasiparticles. Microwave kinetic inductance detectors (MKIDs) are one technique for measuring the number of quasiparticles produced.
 - quasiparticles are trapped near sensitive element of a microwave resonator.
 - measure change in kinetic inductance from change in quasiparticle density
- Intrinsic advantages:
 - speed of signal and high multiplexibility of MKIDs
- Intrinsic disadvantages:
 - good energy resolution not demonstrated
 - competitive resolution at 6 keV not even theoretically possible with Nb

 Not best match to IXO science; could be important for other experiments not requiring highest-resolution spectroscopy

Multiplexed read out: switched SQUID multiplexing

- XMS reference design included time-division multiplexing (TDM)
 - Individual TES pixels are coupled (via each pixel's SQUID) to a single amplifier
 - Multiplexed by sequential switching between SQUIDs
 - Used in TRL-4 TES read-out demo in 2008 (2.6 3.1 eV across 16 mux' d TESs)
- Code Division Multiplexing (CDM) will soon reach TDM TRL level
 - All pixels ON all the time, polarity of coupling is switched
 - CDM has a sqrt(N) noise advantage over TDM, where N is the multiplexing scale
 - IXO/XMS noise budget extremely tight CDM could provide important margin

CDM demonstrated: < 3 eV on 16 switched pixels using flux-matrixed CDM</p>

Frequency domain multiplexing (FDM)

TES bias modulation

- Different TES pixels AC-biased at different frequencies read out by single SQUID
- X-ray pulses seen in amplitude modulation
- Like CDM, pixels on all the time, imparting a sqrt(N) advantage over TDM
- However, in identical pixels tested with AC and DC bias, significantly better resolution was obtained in the DC bias case, which may be fundamental

Microwave multiplexing

- Pixel electronics form high-Q microwave resonant circuits (GHz scale), hundreds of which can be combined on a single coax
- For MKIDs the sensor itself is part of the resonator
- For TESs, MMCs, and MPTs, an unshunted rf SQUID is incorporated into the read out of each pixel, which is in turn coupled to a resonant circuit
- Likely to be needed for pixel scales > ~10,000

Technology roadmap

SCOPE

- Impossible to define a generic technology roadmap for new mission concepts that meet all or some of the original IXO scientific objectives.
- Thus, we have kept close to the original XMS baseline for the detector system for the projected roadmap and cost, with an allowance for alternate technologies to merge into the flow.
- Development of many of the alternate technologies is already funded for other applications.
- The IXO/XMS roadmap is representative of the roadmaps needed for other LTD-based instruments

IXO/XMS TRL 4 reached in 2008

 The "2x8 demo" of multiplexed read-out of part of a TES array achieved the most fundamental goal of a demonstration of TRL 4 – basic technological components were integrated to establish that they will work together.

IXO/XMS roadmap – representative development path for a multi-component focal plane (from mid-TRL technologies)

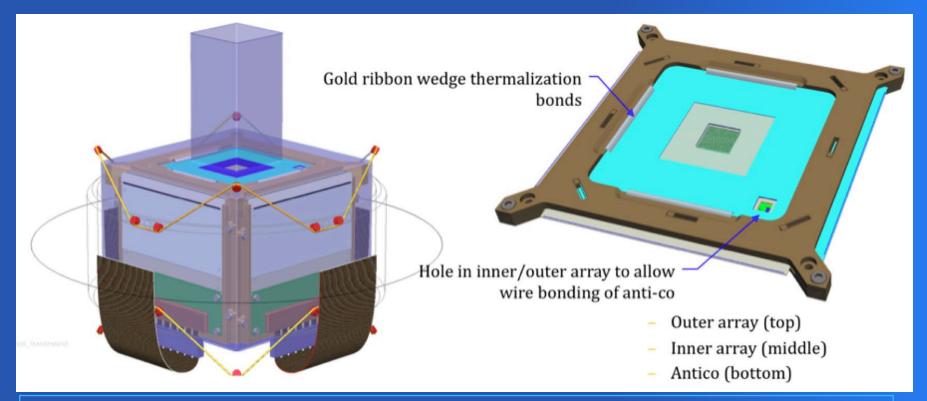
TRL 5 demo of core array

- Demonstrate multiplexed (3 columns x 32 rows) read-out of 96 different flightlike pixels …
 - work towards an Athena-scaled version (3x16) in progress now (Goddard/NIST)

TRL 5 demo of outer array

 Demonstrate multiplexed (2 columns x 32 rows) read-out of 8x8 array of fourabsorber devices...

TRL 5 of particle veto

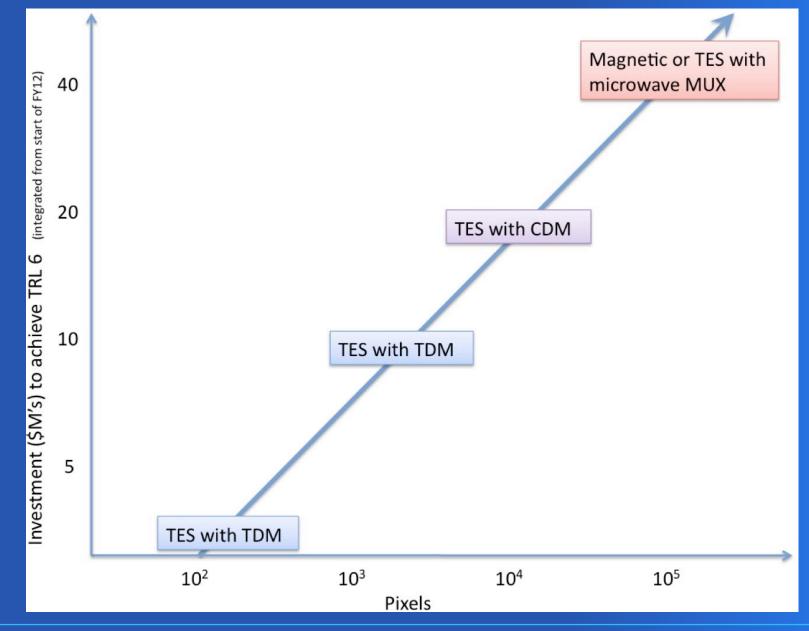

Demonstrate particle veto prototype on scale appropriate for full XMS array...

integrated detector system TRL 5

 Demonstrate core array, outer array, and anti-coincidence detector together, though not in a flight-like arrangement.

IXO/XMS roadmap (3)

- integrated detector system TRL 6
 - Multiplexed (6x32) read-out of portion of full composite focal plane array
 - 128 different single-TES pixels in a 40x40 core array
 - 64 multi-absorber TES (256 0.6-mm pixels) of a full-sized outer array
 - Particle-veto integrated into the test set-up.
 - Electrical and thermal interconnects and staging approach flight-worthy design



Going forward

Cost to TRL 6

- Depends on mission goals and whether funding ramps up quickly or slowly.
- Range ~\$10M to \$20M
 - first is for focused development of only the core-array technologies over ~4 years
 - latter is for slower development of something like full IXO/XMS detector system
 - » some investment in technology variations, such as CDM
 - based on historical cost of advancing these technologies through APRA, Con-X development, and other sources.
- Forecast
 - CDM could replace TDM in the roadmap in the next two years
 - In 2-4 years, new TES designs will enable improvements in intrinsic TES resolution
 - By 2017, magnetically coupled calorimeters and microwave multiplexing will be on solid footing, advancing towards mega-pixel arrays.

Development trajectory

