

Soft X-ray X-ray Polarimetry

Herman L. Marshall MIT Kavli Institute

With Norbert Schulz, Kevin Jenks, Ralf Heilmann and the help of others: Steve Kissel, Bev Ferguson...

Context & Overview

- Polarimetry provides a new view
 - Current predictions suggest application to IXO goals
 - GEMS may verify predictions, cause adjustments
 - Predictions expand as data prospects improve
 - Opens "discovery space"
- Likely Applications
 - Isolated neutron stars NS equation of state
 - Blazars measurements of outflows from BHs
 - AGN accretion disk physics and BH spin and mass
 - Other science X-ray binary pulsars, XRB jets, CVs, XRB accretion....

Polarimetry Probes of Physics

- Polarization measurements allow us to study:
 - Scattering
 - Magnetic fields
 - Strong gravity

Propagation near BH

Propagation to the observer is affected by:

Special relativistic effects: Doppler shift, aberration, beaming

 General relativistic effects: gravitational redshift, light-bending

Plus, the disk illuminates itself via gravitational effects

This returning radiation, which scatters 90° into our line of sight, has a significant effect on polarization

H. L. Marshall PCOS Workshop, 12/15/11

4/19

Image of disk showing intensity as color, polarization vectors a/m=0.998 i=70°

Approved for public release; distribution unlimited.

Polarimetry of AGN

- Scattered return radiation will be polarized
- \bullet Polarization fraction and angle depend on a/M, L/L_{Edd}
- Soft and Hard X-ray measurements are needed

H. L. Marshall PCOS Workshop, 12/15/11 6/19

Neutron Star Atmospheres

- Isolated neutron stars are often soft, emit below 1 keV
- Polarization amplitude and angle v. rotation phase depends on B-field direction and NS orientation
- Atmospheres show features now found in INS spectra
- Polarization data would distinguish features in spectra
- Atmosphere models are used to determine R², g to give M,R

Polarimetry – History

- Only one good case, using OSO-8
 - Crab Nebula, 19±1% (Weisskopf+ 78)
 - 2 energies via Bragg reflection off Graphite crystals at Brewster angle
- Later, XRBs showed < 5% polarization or weak (OSO-8; Long+, Silver+)

H. L. Marshall PCOS Workshop, 12/15/11 7/19

Polarimetry with Multilayer Coatings

- Multilayer coatings: crude crystals
- Peak reflectivity at E given by Bragg condition:

$$E = hc/\lambda, \lambda = 2D\sin\theta_g$$

- Reflectivity increases with number of layers
- At t=45° (Brewster angle), p-polarization nulls

H. L. Marshall PCOS

Soft X-ray Polarimetry

- Start with general use broad-band mirror
- Add gratings to disperse X-rays
 - Blazed gratings high efficiency to one side
 - Resolution: $E/dE \sim 100$, can be > 1000
- Multilayer coated, flat polarizer
 - Use lateral grading to pick out proper wavelength
 - Reflect at 35-45° angle for high modulation
 - Many layers in ML mirror brings reflectivity to 10-20%
- Total bandpass: 0.2-0.7 keV
- Currently testing concept at MIT lab

Laterally Graded Multilayer Coatings

H. L. Marshall PCOS Workshop, 12/15/11 10/19

A Soft X-ray Spectropolarimeter

11/19

Strawman System Throughput

- Telescope 30 cm diam.
- CCD detectors
- Realistic ML reflectivities
- Sample observation of PKS 2155
 - 100 ks exposure
 - detect <5% polarization
 - 4 bands from 0.2 to 0.65 keV
- Sample 200 ks on RX J0720-31
 - detect <10% polarization
 - in same 4 bands

H. L. Marshall PCOS Workshop, 12/15/11 12/19

Small Mission Capability

A Design for a Large X-ray Telescope

- Start with a Grating Spectrometer
- Require >2 readouts
- Add ML coated mirrors
- Offset point

H. L. Marshall

PCOS Workshop, 12/15/11

14/19

ML Polarimetry Testing Laboratory

- Goal: prove components for a flight instrument
- Method: adapt existing lab equipment at MIT
 - Polarize X-rays from existing source
 - Use existing spare Chandra HETG gratings and mounts
 - Add ML coated mirrors (need at least 2)
 - Using spare CCD detector
 - Reconfigure as needed
- Progress: Ready for end-to-end test at one energy (O-K line at .525 keV)
 - Polarizing source alignment nearly done, testing with CCD detector
 - Detector reconfiguration is next

H. L. Marshall PCOS Workshop, 12/15/11 15/19

Polarimetry Lab Source

H. L. Marshall PCOS Workshop, 12/15/11 16/19

Approved for public release; distribution unlimited.

* ASSACHUSETITS * ASSACHUSETIT

Polarimetry Lab CCD Detector

H. L. Marshall PCOS Workshop, 12/15/11 17/19

Approved for public release; distribution unlimited.

System Design

H. L. Marshall PCOS Workshop, 12/15/11 18/19

Summary

- Prospective observations should break new ground
 - Can address IXO science (BH spin, NS EOS)
 - New discovery space
- Soft X-ray (.2-.8 keV) polarimetry is feasible
 - Simple lab demonstration is imminent
 - Flight proposals are likely within 3 yr
 - Can be adapted for use in a large facility
- Technology development need
 - About \$500K for 2 yr to verify laterally graded ML coating
 - Opportunities to propose a small mission
 - Inclusion in studies of large missions with grating spectrometers