

Improving X-Ray Optics Through Differential Deposition

Brian Ramsey¹, Kiranmayee Kilaru², Carolyn Atkins³, Mikhail V. Gubarev¹, Jessica A. Gaskin¹, Steve O'Dell¹, Martin Weisskopf¹, William Zhang⁴, Suzanne Romaine⁵

> ¹NASA Marshall Space Flight Center ²NASA Postdoctoral Program Associate ³University of Alabama in Huntsville (Chandra Fellow) ⁴ NASA Goddard Space Flight Center ⁵Smithsonian Astrophysical Observatory

Differential deposition

• <u>What</u>

 Differential deposition is a technique for correcting figure errors in optics

<u>How</u>

• Use physical vapor deposition to selectively deposit material on the mirror surface to smooth out figure imperfections

• <u>Why</u>

- Can be used on any type of optic, mounted or unmounted
- Can be used to correct a wide range of spatial errors
- Technique has been used by various groups working on synchrotron optics to achieve sub-µradian-level slope errors

Addressing profile deviations through differential deposition

Full Shell Configuration

Process sequence - differential deposition

NASA

Theoretical performance improvement

Possible practical limitations

- Variation of sputtered beam profile along the length of mirror particularly for short focal length mirrors
- Deviation in the simulated sputtered beam profile from actual profile, beam non-uniformities, etc
- Positional inaccuracy of the slit with respect to mirror
- Stress effects

•

Metrology uncertainty

Metrology limitation

Simulations performed on X-ray shell of

8 arc sec simulated HPD

Correction stage	Average deposition amplitude (nm)	Slit-size (mm)	Metrology uncertainty (nm)	Angular resolution (arc secs)	•Potentio resol me
[[]]]]]]]]			± 0	3.6	
1	300	5	± 10	3.6	
			± 50	7.3	•Sub-arc
2	40	2	± 0	0.6	noccible
			± 1	1	possible
			± 5	2	me
			± 10	3.5	
3	4	1	± 0	0.2	
			± 0.5	0.2	
			± 1	0.5	
			± 2	0.8	

•Potential for ~arc-second-level resolution – with MSFC's metrology equipment

•Sub-arc sec resolution could be possible with the state-of-art metrology equipment

Proof of concept

Modify an old coating chamber

Miniature medical optics

Material and process selection

Platinum-Xenon				Platinum-Argon					
power	pressure	roughness	deposition rate	power	pressure	roughness	deposition rate		
75	15	1.950	0.130	75	15	2.060	0.140		
90	15	2.043	0.230	90	15	1.933	0.190		
75	30	1.895	0.170	75	30	1.868	0.160		
90	30	1.810	0.250	90	30	2.083	0.220		
////	11111					1.1.4.4.4.1			
Nickel-Xenon			Nickel-Argon						
power	pressure	roughness	deposition rate	power	pressure	roughness	deposition rate		
75	15	1.915	0.290	75	15	1.995	0.180		
90	15	2.070	0.360	90	15	1.778	0.240		
75	30	3.093	0.240	75	30	2.260	0.220		
90	30	3.630	0.310	90	30	2.210	0.290		
Tungsten-Xenon				Tungsten-Argon					
power	pressure	roughness	deposition rate	power	pressure	roughness	deposition rate		
75	15	1.965	0.300	75	15	1.900	0.120		
75	30	1.805	0.290	75	30	2.125	0.290		
90	30	1.993	0.370	90	30	-	-		
75	50	2.075	0.290	75	50	1.998	0.310		
90	50	2.423	0.370	90	50	1.868	0.370		
	Units: power-Watts, pressure-mTorr, roughness- Å rms, deposition rate – Å/sec								

--X-X-X

Other X-ray optics

* Technique equally applicable to the planar geometry of segmented optics

- * Can correct deviations low-order axial-figure errors and azimuthal axial slope variations in slumped glass mirrors
- * WFXT maintaining high angular resolution 5 arc sec over wide field of view avoiding shell end effects and mounting errors, mid-spatial-frequency errors

Current Status

• Since submitting this RFI response we have been notified of APRA /ARA funding

• This will allow us to build a custom system and demonstrate the technique on larger full shell (MSFC) and segmented (GSFC) optics

• We hope to be able to demonstrate < 5 arcsec performance in 3 years

•To go beyond this, (arcsecond level) is very difficult to judge as we have not yet discovered the problems.

• May necessitate in-situ metrology, stress reduction investigations, correcting for gravity effects, correcting for temperature effects

- Some of this will become obvious in early parts of the investigation
- Top-of-head estimate ~ 5 years total and additional \$2-3M

Conclusion

On planar segmented optics

Differential deposition applicable to Any reflecting configuration Cylindrical full shell optics Segmented optics to correct

Low and mid order axial figure errors

Azimuthal axial slope variation

Profile generation on conical approximated surfaces

Shell edge effects

Mounting effects