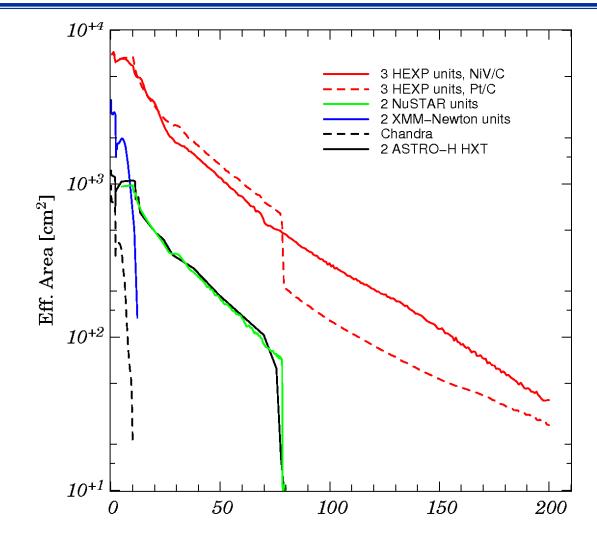


1 1 1 1 1

High Energy X-ray Probe

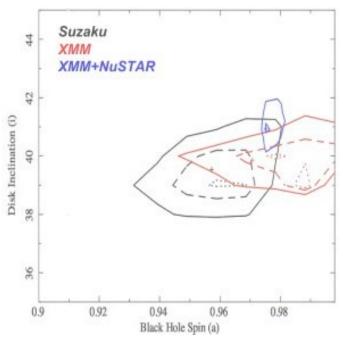
Fiona Harrison Caltech

Cleared for export.

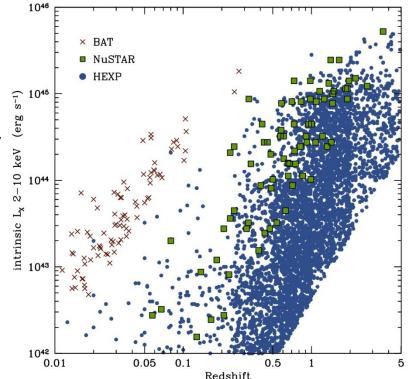

Context for the HEX-P White Paper

- Primary IXO capability was large-area high-resolution spectroscopy
 0.3 10 keV
- Other key IXO capabilities
 - Hard X-ray coverage
 - High time resolution
 - Polarimetry
- Athena recovers the calorimeter science
- The U.S. should consider several options that retain flexibility and are robust to Athena selection, continued JWST cost issues
 - U.S.-only spectroscopy mission
 - Participation in Athena
 - Develop complementary mission(s) with international appeal
- Replacing HXI+WFI (broadband + timing) is obvious choice
- Constraints
 - Probe class (~600M\$) mission
 - Development on timescale that allows overlap with Athena Cleared for export. No distribution restriction.

HEX-P Performance Requirements


Parameter	HEX-P	IXO (HXI+WFI)
Bandpass	0.15 – 200 keV	0.1 – 40 keV
Angular resolution	10 – 15" (HPD) 7 – 9" (FWHM)	5" (3 – 7 keV) 30" (7 – 40 keV)
Time resolution (msec)	<1 0.2 – 10 keV 0.01 (>10 keV)	1.3 msec
Spectral resolution	150 eV @ 6 keV 1 keV @ 60 keV	150 eV @ 6 keV 1 keV @ 60 keV
Field of View	13' x 13'	18' x 18'
Collecting area	8000 cm² @ 6 keV 1500 cm² @ 50 keV	0.65m² @ 6 keV 150 cm² @ 30 keV

Collecting Area



Energy [keV] Cleared for export. No distribution restriction.

- What happens close to a black hole?
 - Spectral distortions due to strong gravity
 - Measurements of distortion of Fe-K line with high energy continuum modeling to remove ambiguities
 - High energy continuum measurements to understand accretion physics
 - Measurement of Compton reflection
 - Measure high energy cutoff
 - Probe inner regions of accretion disk in Galactic BHs through high energy QPO measurements

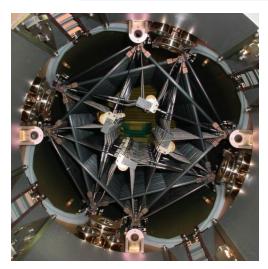
- When and how did supermassive black holes grow?
 - Determine distribution of ~300 BH spins to distinguish merger vs. accretion history
 - Wide field survey of AGN to determine accretion history of obscured AGN

- How does large scale structure evolve?
 - Map non-thermal components in clusters
 - Halos in merging clusters measure CR density, B fields
 - Merger shocks in relics measure particle densities, B fields
 - Accretion shocks result in shell of hard X-ray emission
 - Combine with Astro E/Athena spectroscopy (gas kinematics), get structure of accretion shocks

- How does matter behave at high density?
 - Measure mass and radius in neutron stars to constrain EOS
 - Absorption edges in Type 1 X-ray bursts through timeresolved spectroscopy (eg ⁶⁰Zn 12.2 keV, ⁵⁹Co @ 9.9 keV, ³²S from base of photosphere)
 - Probe inner regions of accretion disk and neutron stars in Xray binaries by measuring QPOs
 - Broadband spectra of BHs and NSs in X-ray binaries

- IXO Science goals not addressed
 - What is the connection between supermassive black hole formation and evolution of large scale structure?
 - Characterize the hot component of WHIM
- These would be goals addressed by Athena or other similar mission

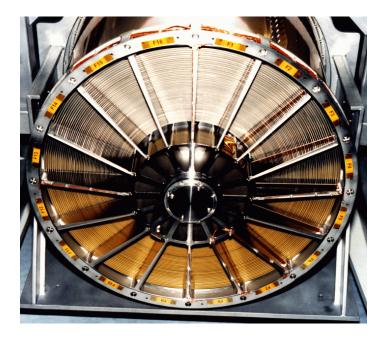
"Other" HEX-P Science


- Nature of ultraluminous X-ray sources
- Binary populations in the local group
- Explosion dynamics in Supernova 1a's
- Starburst galaxies cosmic ray acceleration
- BH content of ULIRGs
- Supernova remnants non-thermal components
- Nature of flares from Sgr A*
- Jet production and particle acceleration in blazars

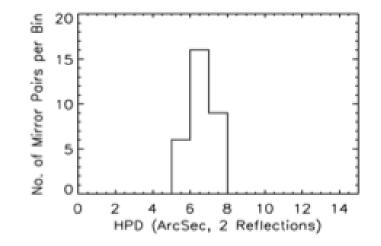
Mission Overview

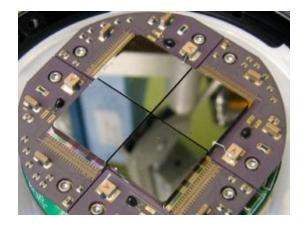
Parameter	NuSTAR	HEX-P	Comment
Focal length	10 m	20 m	30% larger diameter provides similar performance
mass	380 kg	1061 kg	Driven by optics and ACS
volume	1 m diam x 1 m height	2.2 m diameter x 1.6 m height	Driven by optics modules
power	550 W BOL	900 W BOL	Driven by thermal and ACS
orbit	575 x 600 km 5º LEO	650 x 950 km 2 – 7º LEO	Lifetime vs. background trade
LV	Pegasus	Falcon 9	CCAS or Kwajelein
lifetime	2 years	5 years	No consumables
optics	2 modules 133 layers Pt/C + W/Si	3 modules 390 layers NiV/C + W/Si	
Focal plane	CdZnTe	Si APS or CCD + CdTe	
metrology	2 laser units	3 laser units	Tracks mast motion

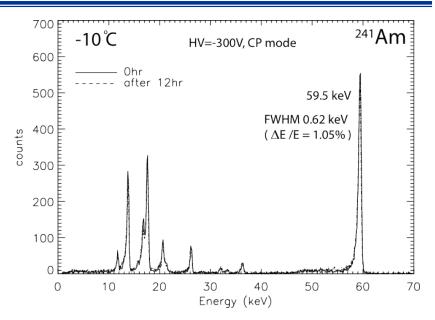
Cleared for export. No distribution restriction.


Mast

- Based on SRTM (60-m) and NuSTAR
- TRL 7
- No significant technical challenges or developments




- Thermally formed glass
- NiV/C + W/Si multilayers
- NuSTAR mounting technique
- TRL 5-7


Optics – Required Development

- Substrate quality has been demonstrated
- Required improvements relative to NuSTAR
 - H-P mandrels (much less deformation when mounting)
 - NiV/S multilayer demonstration
 - Backside coating
 - Improved mounting hardware (more uniform load)
 - Refinements in grinding process

Focal Plane

- Si Detectors
 - CCD or active pixel sensor
 - Selection dependent on technology readiness

CdTe detectors

- Based on NuSTAR ASIC and Acrorad Al/CdTe/Pt
- Required modifications
 - Decrease dead time 80 micros/evt achievable without significant work
 - Reformat for larger focal plane
- TRL 5-7

WBS	Dev	Ops	Total	Notes
PM/PSE/SMA	23.4	8.6	32	historical mission average wrap rates
Science	4.7	33.0	37.7	Dev based on NuSTAR; Ops based on Spitzer
Payload	107.9		107.9	NICM + PRICE model
Spacecraft	65.2		65.2	SSCM + PRICE model; includes ATLO
MOS/GDS	7.8	90.0	97.9	Dev based on NuSTAR; Ops based on Spitzer
Launch vehicle	56.0		56.0	SpaceX published cost for Falcon 9
E/PO	2.1	1.3	3.4	1% of total, excluding Reserves and LV
Reserves	63.3	19.9	83.2	30% Phases A-D, excluding LV; 15% Ph. E-F
Total	330.3	152.9	483.2	

Table 3. ROM cost estimate (\$M, FY12).

Summary

- Together with Athena (or similar) mission HEX-P would recover original IXO science
- In addition HEX-P will have broad and compelling science program
- Is mature enough that could be launched on similar timescale as Athena
- Probe-class cost